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1. Introduction

The term “Intelligent Environments” is used to encompass a range of applications that
range from smart homes to e-health to e-learning, etc. Typically, these applications are
developed and deployed by experts and engineers and are then left in the hands of end-
users that are allowed to modify the behaviour of some of the components. For instance, a
user may change the minimum temperature of a thermostat if specific events occur, such
as motion or sound is detected at night time to indicate that a child may have woken up.
It is safe to assume that users interact with existing applications by adding or removing
rules. In general, these rules take the form of Event-Condition-Action (ECA) rules: an
action is executed if a certain event happens and a specific condition is met. We expand
on ECA rules in Section 2; for the moment, we remark that a substantial amount of effort
has been devoted to techniques and tools to guarantee that rules are “correct” with respect
to the intended behaviour of the system (where “correct” can be defined in a number of
ways).

In this paper we present a model for ECA rules that exploits the features that are typ-
ical of Intelligent Environments (IE). In particular, applications for IE are usually built
starting from a set of sensors and actuators that interact by means of message passing
over a network. Our model characterises the state space of an application by means of
partitions between sensors and actuators, and introduces evolution functions that distin-
guish between “environmental” and “artificial” transitions (in a sense to be defined be-
low). We show with a practical example that this characterisation results in a model that
is close to the end-user specification and yet compact and suitable to automatic manipu-
lation for analysis and verification.
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The rest of the paper is organised as follows. In section 2 we present an overview of
the area and we introduce a modelling language for ECA rules; in Section 3 we describe
our modelling approach based on the language for ECA rules described in the previous
section; in Section 4 we show how our modelling approach can be applied to a practical
example. We conclude in Section 5.

2. Related Work

An Intelligent Environment is a physical or logical space that contains a potentially very
large number of devices that work together to provide users access to information and
services. It is likely to contain many different types of devices linked together, like sen-
sors and actuators, since it must have a clear representation of the physical space from
both a sensory (input) and control (output) perspective. ECA based languages have been
proposed by a number of sources in order to control sensors and actuators. ECA rules
are used to define responses to events and are specified in the form “on the occurrence of
certain events, if some conditions are true, perform these actions”.

Implementing applications by using ECA rules is an error-prone process, and there-
fore various formal approaches have been proposed to check and guarantee the correct-
ness of these rules. In [1] the authors present an efficient policy system that enables pol-
icy interpretation and enforcement on wireless sensors. Their approach supports sensor
level adaptation and fine-grained access control. In [2] the authors present a rule-based
paradigm to allow sensor networks to be programmed at run time in order to support
adaptation. The approach presented in [3] describes an ECA based middleware for pro-
gramming IE. While all the aforementioned approaches provide quite powerful tools for
programming IE, they do not provide any automatic means of translating programs into
formal specifications that can be automatically verified. In [4] the authors translate a set
of ECA rules into a Petri Net in order to perform safety analysis. The approaches pre-
sented in [5] and [6] use the model checkers SPIN and SMV in order to verify termina-
tion. In [7] a tool-supported method for verifying and controlling the correct interactions
of rules, is presented. A formalisation of ECA rule-based system is described in order to
perform the translation into Heptagon/BZR program.

In spite of this great variety of approaches, to the best of our knowledge formal
verification of ECA rules has not been tailored to the context of Intelligent Environments.
Indeed, as we show in this paper, it is possible to exploit the structure of this domain to
simplify and optimize the modelling and therefore the verification process.

2.1. IRON

We employ IRON (Integrated Rule on Data) as the underlining formalism for modelling
Intelligent Environments. IRON is presented in [8]: it is a limited predicate logic-based
language that supports the categorisation of devices into sets [9], allows the definition of
properties over sets and supports multicast and broadcast abstractions.

IRON programs are composed of two separate classes of specification: static and
dynamic. We report the IRON syntax in Figure 1 we recall the IRON syntax, where [x]
means an optional occurrence of x, and boldface denotes keywords of the grammar. The
static part is composed of variables declarations (these variables can be sets, physical
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1 program ≡ ( device | rule | var_decl )+
2

3 device ≡ physicalDevice | logicalDevice | set
4

5 physicalDevice ≡
6 physical (sensor|actuator) type id [= exp] node(id,id)
7 [in id (, id )* ] [where exp]
8 logicalDevice ≡
9 logical (sensor | actuator) type id = exp

10 [in id (, id )* ] [where exp]
11

12 set ≡ set (sensor | actuator) type id
13 rule ≡ rule id on (id)+ when exp then action
14 action ≡ [id = exp ]+
15

16 exp ≡ exp op exp | (exp) | term
17 term ≡ id | int | set_op set id | true | false | function
18 type ≡ int | boolean
19 set_op ≡ all | any | one | no | lone
20

21 OP ≡ == | != | < | > | <= | >= | + | - | * | / |
22 and | or | not
23 var_decl ≡ type id = exp [where exp]

Figure 1. The IRON extended BNF.

and logical devices) plus global constraints defined over them using restricted first order
formulae. A physical device defines a piece of hardware that is physically installed in the
environment, it has a type (i.e. integer of boolean) and can be either a sensor or an actu-
ator. A physical device has a name and is characterised by the syntax node(id, id) where
the first id is an identifier that uniquely identifies the physical node while the second id
uniquely identifies a sensor/actuator that is installed on the node. The keyword in can be
added in order to specify a list of sets the physical device belongs to. IRON also supports
the definition of logical devices. A logical device can be set according to the values ob-
served over different sensors and actuators, and thus it produces information that would
be impossible to get by considering a single physical device. A logical sensor/actuator
does not specify any node(id, id) keyword but must specify an initial value (line 8−10
of the grammar). The static part also includes the declaration of constraints (specified by
the keyword where), i.e. laws that various variables, devices and sets must always satisfy.
Constraints can be used in order to specify rules that bind variables together. The use of a
constraint has two applications: (1) it defines valid states of the system regardless of the
rules that are defined, and (2) it is used at run-time to verify whether any physical device
is providing erroneous data. Sets (line 3 of the grammar) are considered to be logical de-
vices and are used to group together either sensors or actuators of the same type (line 12
of the grammar). A programmer can assign values to a set that contains actuators. This
assignment can be used in order to instruct all the actuators to perform a specified action.
Effectively, a set assignment is an abstraction of a multicast communication primitive
that can be used to communicate to actuators an action to be performed. A programmer
can read the value of a set of sensors in order to define events and specify conditions. To
this end various set operators are introduced.
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The dynamic part of IRON is composed of ECA rules that are defined by the pro-
grammer. The monitoring and control actions are specified by using ECA rules. A rule
has a name and is composed of three different parts that are on, when and then (line
13 of the grammar). A list of variables follow the on keyword. Whenever one of them
changes its value, the boolean expression that follows the keyword when is evaluated.
When this expression is evaluated to true the rule can be applied and the actions listed
after the keyword action can be executed. A boolean expression can include relational
and logical operators, integers, devices, variables and functions. An action is a list of as-
signments to variables, physical actuators and logical devices. Special operators are used
to support the definition of a boolean condition over a set: all, any, no, one and lone. All
is a universal operator that allows the definition of conditions that must be satisfied by
all devices belonging to the set. Any is an existential operator that can be used in order
to specify that at least one of the element of the set must satisfy the condition. No (one)
is used when we need to express that no (respectively, exactly one) element of the set
must verify the specified condition. lone is used when we need to express that at most
one element of the set must verify the specified condition.

3. A Formal Model for ECA Rules

In this section we present a formal model for Event-Condition-Action Rules that parti-
tions the state space and the evolution function taking into account the features that are
typical of Intelligent Environments. The model is based on IRON and it allows for a
precise definition of formal requirements and for their efficient verification.

3.1. State Space

Applications for IE are usually built starting from a set of sensors and actuators that in-
teract by means of message passing over a network. In this context, we formalize a model
representing a system composed of devices of two categories: sensors and actuators. For
the sake of simplicity but without loss of generality, our model does not include the def-
inition of sets and the distinction between logical and physical devices. These could be
introduced at the cost of additional notation but do not affect the overall partitioning
strategy described below.

Let D be the set of labels that identify the devices of the system. We represent D
as the union of two disjoint sets, I and O, whose elements are, respectively, the sensors
and the actuators of the system. We use the notation D = {i1, . . . , im,o1, . . . ,on} = I ∪O
where I = {i1, . . . , im}(m ∈ N0) and O = {o1, . . . ,on}(n ∈ N0).

Definition 1. A state of the system is defined as the function ϕ : D →Val where Val is a
finite set of integer or boolean values. We add to this set a special value ω to denote an
undefined value in D.

We can represent the function ϕ as ϕ = {i1 �→ vi1 , . . . , im �→ vim ,o1 �→ vo1 , . . . ,on �→
von} , where vi j ∈ Val for j = 1, · · · ,m and voh ∈ Val for h = 1, · · · ,n . In other words, a
state ϕ is a set of associations between labels in D and their specific values in Val. We use
the notation ϕ(d) for representing the value vd associated to the generic device d by mean
of ϕ . Given a generic state ϕ , if it does not contain any association for a certain device
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d ∈D we use the notation ϕ(d)=⊥ . We will also use the notation ϕ =< Iϕ ,Oϕ > instead
of ϕ = Iϕ ∪Oϕ , where Iϕ = {i1 �→ vi1 , . . . , im �→ vim} and Oϕ = {o1 �→ vo1 , . . . ,om �→ von} .
Given the definition of a state, we now introduce the definition of universe.

Definition 2. The universe Φ of a system is the set of all possible states of the system. In
other words, it is the set of all possible functions ϕ defined in Def. 1.

By adding constraints to the system, i.e. conditions that must be satisfied, we can
define the admissible state space as follows.

Definition 3. Let Φ be the universe. The admissible state space Φa is the subset of Φ
whose elements are all the states ϕ that verify the constraints of the system.

For instance, if all sensors and actuators in D are boolean, the set Val consists of
three values (i.e. two boolean values and the value ω) , and the set Φ has cardinality
3m+n . By applying the static constraints we obtain the admissible state space Φa ⊆ Φ
having cardinality less or equal than 3m+n . The set of static invariants must be satisfied
independently from the set of ECA rules of the system. We will denote the cardinality of
Φa with z and a generic state in Φa with ϕ . The notation ϕout will be used to represent a
generic state that is not a member of the set Φa .

3.2. ECA Rules

Given the set D and the state space Φ , we consider the finite set R of labels
for ECA rules R = {r1,r2, ...,rk} , k ∈ N0 . Following [10], we use the notation
Event[Condition]/Action , to represent a generic ECA rule labelled with r. Therefore,
a generic rule r in R is represented as er[cr]/ar, where er ,cr ,ar are labels for the
event, the condition and the action of r respectively. Let now define each component
of the ECA rule r. The generic event er is represented as a subset of labels in D , i.e.
er = {dw1 , · · · ,dw f } ⊂ D . The event is the trigger for the ECA rule, i.e. when a change
concerning the value of at least one of the labels in er occurs, the condition is evaluated.
The condition cr is a restricted first-order logic predicate (as defined in the IRON gram-
mar) having variables in D , i.e. cr = P(dβ1 · · · ,dβl

) , dβ1 · · · ,dβl
∈ D . If the condition

is true, the action is applied to the state of the system. A generic action ar is defined as
a set of assignments for a subset of actuators in O, i.e. ar = {oα1 ← vα1 , · · ·oαp ← vαp} ,
where oα1 , . . . ,oαp are in O . For the state ϕ , for all o j ∈ Oϕ we use the following nota-
tion:

ar(o j) =

{
vαk if o j = oαk

vo j if o j �= oαk

Notice that we have exploited here the features that are typical of IE, taking into
account the fact that a generic action defined by the user can only change actuator con-
figurations.

3.3. System Evolution

In this section we introduce a specific formalism for representing the evolution of our
system. The formalisation is based on the following observation: according to the fea-
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tures typical of IE that are described in our model, the evolution of the system can be
partitioned into two sets, i.e.

• the set of artificial transitions resulting from the application of ECA rules (these
changes concern only actuator values);

• the set of natural transitions that result from the spontaneous changes of the en-
vironment (these variations concern only sensor values).

According to this partition, we can introduce the following concepts:

• a state is called stable if it is the source state of a natural transition;
• a state is called unstable if it is the source state of an artificial transition.

We can observe that a natural transition can be formalised using the function tN :
I ×O → I that changes only natural values, while a generic artificial transition can be
represented with the function tA : I ×O → O that affects only actuator values. In our
model, artificial transitions correspond to the application of ECA rules.

Figure 2. System evolution.

Using the previously introduced formalism, the function tN leads a generic state
ϕ =< Iϕ ,Oϕ > into the state ϕ ′ =< I′ϕ ,Oϕ > changing only the sensor value config-
uration, while tA leads a state ϕ =< Iϕ ,Oϕ > into the state ϕ ′′ =< Iϕ ,O′′

ϕ > changing
only the actuator value configuration. Figure 2 shows the evolution of an example system
from the initial state < I3,O0 >: the successor states are obtained by applying two arti-
ficial transitions (depending on the condition that is satisfied) that lead the system from
< I3,O0 > either to O3 (notice that I3 is omitted as it does not change) or to O6 . The
states < I3,O3 > and < I3,O6 > are stable and only natural transitions can be applied to
these states.

Using the evolution functions tN and tA, it is possible to perform a partition over
the set Φa. We use the generic example represented in Figure 3 for a clarification of
how tN and tA interact. In this figure, white circles are unstable states in Φa, while green
states are stable states. Natural transitions are represented by dotted arrows, while arti-
ficial transitions are represented by solid arrows. States are grouped together into three
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Figure 3. System behaviour.

sets, A1,A2,A3 in which the input sensors do not change value. Natural transitions link
together these sets. Inside each set, the states are linked to each other via artificial transi-
tions, since changes are due only to actuator values.

In summary, in our model artificial transitions correspond to the application of ECA
rules, while natural transitions correspond to changes in the environment. We do not
model here the spontaneous evolution of the environment but we only give a represen-
tation of the natural evolution in terms of “the minimum natural transition that links a
stable state to an unstable state”.

The representation of the evolution of the system in our model is based on the two
hypotheses: the first one concerns the representation of initial states of the system, the
second one is related to the execution time of transitions.

1. The initial configuration of actuators is given by an external entity. Let O0 , be
the initial configuration of the actuators, and we additionally assume that each
configuration verifies the static constraints. As a consequence of this hypothesis,
the number of initial states in our representation corresponds to the number of
all possible configurations I j of sensors such that < I j,O0 > is an admissible
unstable state for the system, i.e. there is at least one ECA rule that can be applied
to this state.

2. Natural transitions take a longer time than artificial evolutions, that is to say the
maximum execution time of the chains of artificial transitions is always strictly
less then the minimum execution time of natural transitions.

Intuitively, looking at Figure 2, the configuration O0 is known and the initial states
of the system are < I j,O0 > with j = 1, ...,5 . Taking into account the example in Figure
3 we can represent the second hypothesis as follows:

min
tN |A j

tN→A j+1, j=1,2
elapsed_time(tN)> max

i=1,2,3
∑

tA∈Ai

(exec_time(tA)) .

4. A Concrete Example

Monitoring and automatic control of a building environment is a case study consid-
ered quite often in literature, see for instance [11,12]. Home automation can include a
number of functionalities, such as centralised light control, emergency control systems

C. Vannucchi et al. / A Formal Model for ECA Rules in Intelligent Environments62



(home burglar security alarm, fire alarm); (iii) heating, ventilation, and air conditioning
(HVAC) systems, etc. Consider the example represented in Figure 4. The house is com-
posed of two rooms, the living room (denoted with L) and the bedroom (B). We assume
that only one person has access to the house at any given time. We assume that a 360
Degree Passive Infrared Motion Sensor (PIR) is placed on the ceiling of both rooms,
and each room is completely covered by this sensor. The occupancy sensor placed in
every room can be used for controlling lights automatically. We also hypothesise that a
light switch is installed in every room to turn on and off the light manually (for exam-
ple, when someone goes to sleep). The set of devices placed in the house is given by
D = {Lm,Ll ,Ls,La,Bm,Bl ,Bs,Ba} where L stands for living room, B stands for bedroom,
m represents a PIR detector, l is a natural light sensor, s is a light switch, and a is a lamp.
For example the light sensor in bathroom is labelled with Bl . The entrance is in the living
room and the bedroom is accessible from the living room.

Figure 4. Floormap.

As described above, a generic state of the system is a function ϕ : D → Val where
Val = {0,1,ω} . As above,ϕ =< Iϕ ,Oϕ > where, in our case, Iϕ = {Bm �→ v,Bl �→
v,Bs �→ v,Lm �→ v,Ll �→ v,Ls �→ v} , and Oϕ = {Ba �→ v,La �→ v} . We define the following
static constraints for the system:

(i) [¬(Lm ∧Bm)]
(ii) [¬(La ∧Ba)]

The first constraint states that the person cannot stay in both rooms simultaneously.
The second one states that light actuators cannot be both on at the same time. As a
consequence, according to the constraint (i), a state having both light actuators on is not
admissible. By applying these constraints, we obtain the admissible state space Φa. This
set cannot contain states with ϕ(Bm) = ϕ(Lm) = 1 nor states having ϕ(Ba) = ϕ(La) = 1 .
The dynamic of the system is then defined using the following ECA rules:

r1: Lm[Lm ∧¬Ll ]/La ← 1
r2: Bm[¬Lm ∧Bm ∧¬Bl ]/La ← 0,Ba ← 1
r3: Bm[¬Bm ∧Lm ∧¬Ll ]/Ba ← 0,La ← 1
r4: Lm[¬Lm ∧La]/La ← 0

For instance, r1 encodes the fact that when a person enters in the living room and
the light is off, the light is turned on (and similarly for r2 to r4 encoding the dynamic of
the light actuators in all rooms). Let be the initial actuator configuration of the system
given by O0 = {Ba �→ 0,La �→ 0}, i.e., all lights off, and supposed that in this initial state
a person enters the room. This is captured by ϕ1 in Table 1.

A sample evolution of the system is represented in Figure 5. The key point here
is that the full state space of the system would have 38 states (due to the ω value for
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Table 1. States.

I O
Lm Ll Ls Bm Bl Bs La Ba

ϕ1 1 0 0 0 0 0 0 0
ϕ2 1 0 0 0 0 0 1 0
ϕ3 0 0 0 1 0 0 1 0
ϕ4 0 0 0 1 0 0 0 1
ϕ5 1 0 0 0 0 0 0 1
ϕ6 0 0 0 0 0 0 1 0
ϕ7 0 0 0 0 0 0 0 0

not admissible or unknown values). However, thanks to our approach, a partition of sets
having the same sensor configuration can be obtained and we only need to deal with
changes in actuators satisfying the constraints for the system. This results in a state space
including only 3 valid combination for output variables that need to be considered over 6
sensors, not all of which admissible. Indeed, the admissible sensor values are 3 ·3 ·4= 36,
instead of 64. This is because the two lights cannot be on at the same time (hence only 3
possible values for light actuators), and the same for the two PIR sensors as a person can
only be in one room. The two light switches, instead, are not affected by our constraint
rules.

Figure 5. System evolution.

5. Conclusions

In this paper we have presented a model for Intelligent Environment that formalises
Event-Condition-Action rules and exploits the partition of devices into sensors and actu-
ators. Our example provided in the previous section shows that the state space can be re-
duced substantially when constraints are added to the separation between input and out-
put devices. Moreover, our model represents ECA rules by means of restricted first-order
expressions without nested quantifiers and using only linear arithmetic operators.

While our model could be used as is to reason about the correctness of requirements
for specific systems, our aim for the future is to explore the use of verification algorithms
operating directly on our representation. In particular, we are currently investigating the
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use of SMT solvers such as CVC4 [13] in conjunction with a formal characterisation of
the correctness of rules, such as non-confluence, non-redundancy, etc. We also plan to
investigate the extension of the formalism to deal with noisy sensors and probabilistic
reasoning.
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