A Distributed Monitoring System for Enhancing
Security and Dependability at Architectural
Level

Paola Inverardi and Leonardo Mostarda

Dip. di Informatica, Universita di I’Aquila, Coppito 67100, L’Aquila, Italy
{inverard,mostarda}@di.univaq.it

Abstract. In this work we present the DESERT tool that allows the
automatic generation of distributed monitoring systems for enhancing
security and dependability of a component-based application at architec-
tural level. The DESERT language permits to specify both the compo-
nents interfaces and interaction properties in term of correct components
communications. DESERT uses these specifications to generate one fil-
ter for each component. Each filter locally detects when its component
communications violate the property and can undertake a set of reaction
policies. DESERT allows the definition of different reaction policies to
enhance system security and dependability. DESERT has been used to
monitor applications running on both mobile and wired infrastructures.

1 Introduction

In this work we present the DESERT tool that allows the automatic generation
of distributed monitoring systems for enhancing security and dependability of a
component-based application at architectural level.

In our system model we assume a set of black-box components that interact
with each other by exchanging messages. A message encodes information about
the type of communication, i.e. a request or a reception, the kind of service
and its parameters and the (returned) data. This architectural level model has
shown to be flexible enough to model several types of distributed systems and
communication patterns. For instance, in [I] we model mobile sensors applica-
tions. In this case components are sensor devices and communication is achieved
by means of send and receive asynchronous invocations. In [2] we have modeled
CORBA middleware based applications. In this case we have CORBA compo-
nents that communicate by means of different types of service invocations (i.e.,
asynchronous, synchronous and deferred synchronous invocations).

At the architectural level we define an anomalous component as one that in-
teracts with the remaining components in order to subvert the ’correct’ system
behavior. Anomalous component interactions can have different origins and their
detection constitutes the basis to provide different functionalities of the system.
For instance, anomalous interactions can originate by a malicious component
that exploits other components vulnerabilities (see [3] for an extended survey).

R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 210 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Distributed Monitoring System for Enhancing Security and Dependability 211

In this case the component detection constitutes the basis to build an Intrusion
Detection System (IDS)[ABIGTIS] to enhance the system security functionality.
In the field of dependable computing, anomalous components interactions can be
a consequence of architectural mismatch [9] and/or of components faults that
lead to system failure. In this case the detection mechanism can be the basis
for error detection and system recovery [I0]. In the field of performance evalu-
ation, anomalies on components interactions can be a consequence of degraded
response time, thus detection mechanisms can be used to provide reconfiguration
mechanisms.

Today’s monitoring tools [I1] are a viable solution to detect anomalous com-
ponents interactions. They are tools that: (i) gather information about appli-
cations, (ii) interpret the gathered information; (iii) respond appropriately (i.e.
they can undertake different reaction policies). A monitoring system can be char-
acterized by the functionalities it provides. Modern monitoring tools are used
to increase security, dependability and performance (see Section [2] for a detailed
survey). Moreover they can be part of the target system therefore they can add
new system behaviors.

In this work we present the DESERT tool [I22[TI3] that allows the generation
of distributed monitoring systems for component based applications.

The monitoring definition is obtained starting from a DESERT program writ-
ten in the DESERT definition language. The DESERT program contains both
an interfaces descriptions part and a global automaton one (Figure [part 2).
The interfaces descriptions part is obtained by means of an interface descrip-
tion language that permits to describe each component of the system in terms
of its name and the services that it requires/provides. The global automaton
part can contain different state machines (that in the following will be referred
to as interaction properties) that are described by means of a DESERT state
machine definition language. A state machine describes the correct messages
exchange among components (i.e. the correct component communications). As
we are going to see in Section 3.2 the state machines can model complex com-
munication patterns but they are not suitable to describe temporal properties
(i.e, the DESERT approach is appropriate for applications without timeliness
requirements).

Global Sys_tgm
Automaton activity
log
Interfaces
descriptions C1 Local
DESERT program Automaton
FILTER
(1) Component GUI A
Based Development (2) Monitoring definition (3) Filters system

Fig. 1. DESERT phases

212 P. Inverardi and L. Mostarda

The DESERT program is a means to define a logically centralized monitoring
tool. This monitoring tool: (i) gathers all messages exchanged among compo-
nents; (ii) checks the messages consistency with respect to the property defined
by the global automaton; (iii) in case of mismatches undertakes a set of reaction
policies. Different reaction policies can be defined to provide different function-
alities of the system. For instance, when a component misbehaves for malicious
purposes isolation of this component can be the correct reaction to enhance the
system security. In case the component performs anomalous interactions as a
consequence of a fault, recovery reaction can improve the system dependability.

The implementation of the logically centralized monitoring system can pose
problems of security, reliability and performance. Furthermore, already existing
legacy distributed systems could not allow the addition of a new component
which monitors the information flow in a centralized way.

To overcome these problems DESERT automatically decomposes the global
automaton in a set of local automata that are assigned one for each component. A
local automaton constitutes the basis to build a filter that is interposed between
its component and the environment (see Figure [l part 3). The filter captures
all incoming/outgoing component messages and uses the local automaton to
locally detect violation of the policy expressed by the global automaton. In other
words, the filters taken as a whole system constitute a monitoring system that
is “equivalent” (see [T2JT3] for a formal description) to the centralized one.

The DESERT tool implements both a front-end and a set of back-ends. The
former, starting from the DESERT program and a component name (e.g. C2),
produces the platform independent specification of the C2 local automaton.
The latter translates the C'2 local automaton specification in a specific filter
implementation. For instance for distributed applications where the components
communicate by using the CORBA middleware we have implemented a CORBA
back-end. This back-end automatically produces a new CORBA component (the
filter) that is interposed between the component communications and the envi-
ronment.

We point out that the novelty of this work is the description of the DESERT
definition language and the overview of the DESERT distribution basic steps. In
fact in [T2/T3] we primarily focus on the proofs of correctness and completeness
of the distribution process while in [2] and in [I] we only sketch how the approach
can be suitable for different areas (i.e, enforcement and security respectively).

The paper is organized as follows. In the next section we present an overview
of the monitoring system technology and we summarize the contribution of our
architectural level monitoring technology. Section [3 introduces our monitoring
definition language, in particular, Section Bl describes our interface description
language and Section the state machine specification language. Section Ml
shows how interfaces and state machine can be used to define a logically cen-
tralized monitoring system. Section [l summarizes the different reaction policies
that can be set to generate different monitoring systems for different areas of
applications. Section [@] sketches the generation of the distributed implementa-
tion of the logically centralized monitoring system. Section [describes different

A Distributed Monitoring System for Enhancing Security and Dependability 213

case studies in which we have applied our monitoring approach. We show how
our reaction policies can be tuned in order to output different monitoring sys-
tems used for different functionalities of the system. Finally, Section [§ provides
conclusive remarks and future work.

2 Monitoring Tools at Glance: Concepts and Terminology

Monitoring systems have been around since the 1960s. Originally they were con-
ceived with a centralized structure and used to debug centralized systems. To-
day’s monitoring systems monitor distributed applications and themselves have
a distributed architecture. Generally speaking, a monitoring system can be de-
fined as tools that: (i) gathers system information; (ii) interprets the gathered
information; (iii) after interpretation can undertake a set of reaction policies.
Monitoring provides a solution for areas of growing concerns: lack of depend-
ability, security and performance enhancement and tools to support distributed
applications.

sensor Sensor configuration
_ PEC:IT;E?’? initialization Sensor installation
i~ L event
Dependability atherin interpretation
o — Debugging I 9 specification
Monitoring T
Testing event
L Control interpretation
— Security reaction policies | | reaction policies
L Enforcement specification execution
Fig. 2. Monitoring uses Fig. 3. Monitoring activities

In Figure 2] we show the primary uses of monitoring tools. Dependability
includes cases in which interpretation involves detection of system errors and re-
action policies are undertaken to enhance the system fault tolerance [I1]. Perfor-
mance evaluation includes detection of the system response time degradation. In
this case reactions can include system reconfiguration, dynamic program tuning
and on-line steering. Security involves the interpretation of information in order
to detect attacks. In this case interpretation of information can be performed
using a set of predefined intrusion signatures and/or the correct system behavior
definition. The former are referred to as misuse detection systems [SIT4THITE]
while the latter are referred to as anomaly detection systems [T7U7IT8IBITIT2IA].
Debugging and testing employs monitoring techniques to extract data values
from an application being tested. Control includes cases in which the monitor-
ing implements part of system functional requirements. Finally, enforcement [20]
is the case in which the monitor interprets information in order to ensure desired
system behaviors.

214 P. Inverardi and L. Mostarda

Despite the various monitoring system utilizations their definition involves the
following standard activities: (i) sensor initialization; (ii) gathering; (iii) event
interpretation specification; (iv) event interpretation; (v) reaction policies spec-
ification; (vi) reaction policies execution (see Figure Bl). Each activity can be
performed either by the user or by the monitoring system itself.

In order to describe the above activities in the following we introduce some
basic concepts common to all monitoring systems.

Information arrives to the monitoring tools in the form of events. Events can
regard the system states, interactions among system parts and system activities.
We point out that events can be related to different layers of abstraction, i.e,
hardware-level, process level and application level. A sensor is the monitoring
element that locally gathers events. Sensor automatically sends events when they
occur or it is the monitoring system itself that can request them.

Sensor initialization (see Figure B]) includes configuration and installation.
Configuration is carried out by deciding what events a sensor will gather and the
definition of additional sensor capabilities, e.g., local conditions checking. Sensor
installation is carried out by placing the sensor code at the correct location. This
is usually performed through code instrumentatio] or conceiving the sensor as
an external observer that sniffs all communications among system parts.

Gathering is the activity in which sensors collect events and forward them
to the monitoring system. The gathering can be either off-line or in-line. The
former is characterized by the fact that the gathering code uses the resources
of the target system. The latter is characterized by the fact that the gathering
code uses resources separated from the target system ones.

Event interpretation is the heart of the monitoring system, where the moni-
toring system interprets events. Event interpretation is achieved using the event
interpretation specification that is usually defined by means of errors conditions
description and/or description of correct system behaviors. Event interpretation
can be categorized either as synchronous or asynchronous. Asynchronous is when
events are interpreted after system execution. Synchronous when the system is
suspended until event interpretation.

Reaction policies execution can take place after event interpretation and its
implementation must comply with the reaction policies specification. Reaction
policies specification are a consequence of the monitoring system uses. Earlier
monitoring systems were only involved in logging and tracing reactions. Nowa-
days monitoring systems embed complex reactive utilities that can be undertaken
after event interpretation.

Generally speaking, reaction policies can be either non-intrusive or intrusive.

Non-intrusive reaction policies do not affect the program behavior except for
execution speed and program size. Logging and tracing are examples of these
monitoring system reactions. Logging can be performed to record violations of
the correct system behavior. Tracing can be viewed as a high-level logging utility

! Instrumentation requires code access and can be manually performed by the user or
automatically by code analysis.

A Distributed Monitoring System for Enhancing Security and Dependability 215

that records all sequences of interactions resulting in the anomalous system
behavior.

Intrusive reaction policies affect, to some degree, the state, the configura-
tion and/or the execution of the system (see [I0] for an extended survey). For
instances intrusive reaction policies are: (i) termination; (ii) shunning; (iii) re-
configuration; (iv) rollback; (v) rollforward. Termination refers to the monitoring
system ability to terminate part (or the whole) system execution. Shunning is
the case in which the monitoring system denies the traffic generated by a specific
source or a set of sources. Reconfiguration can physically alter the location or
functionality of network or system elements. For instance, in the field of depend-
ability, reconfiguration can be useful to switch in spare components or reassign
tasks among non-failed components. In the case of security reconfiguration can
be used to isolate the attackers. Rollback brings the system back to a previous
saved state. Rollforward brings the system, in a new ’safe’ state.

In this paper we focus on monitoring systems that use formal specifications for
event interpretation (in the following referred to as specification-based monitor-
ing systems). Different names, that depend on the monitoring system uses, can
refer to a specification-based monitoring system. In the field of security they are
referred to as specification-based and anomaly-based IDSs [GII24]. In the field
of dependability and correctness checking they can be referred to as software-
fault monitors [IT] and enforcement mechanisms [20],respectively. Despite these
various uses, a specification-based monitoring system is usually interpreted as
a tool that takes an application and a specification of software properties and
checks that the execution meets the properties, i.e., that the properties hold for
the given execution. A property can describe the correct communication among
system parts, the correct system states and the correct system activities. A spec-
ification language is a language that is used to describe properties.

LTL
Safety Algebra
te(r?:hsrral/ Property type \ /Language type Z_ Automata
P \ Logic
Module specificaton N\ ...
Program \ |\ language \ /Domain
onltorlng
Statement7 directives Abstraction level T Design
------ \ Implemetation

Fig. 4. Specification language categorization

In Figure @l we show the elements that can characterize a specification lan-
guage: (i) the language type; (ii) the abstraction level; (iii) property type; (iv)
the monitoring directives. The type of language used to define a property can
be based on algebra, automata, logic and so on. The abstraction level refers to
the support that the language provides in order to specify the property and the
knowledge about the domain, the design and the implementation of the system.

216 P. Inverardi and L. Mostarda

For instance, a language that provides support to specify properties for CORBA
middleware would be classified domain-based. A language that allows the spec-
ification of properties in implementation independent fashion would be design
based. Finally, properties that involve statements and variables of a system have
to be defined by means of implementation-dependent language.

Two types of properties can be specified: safety and temporal ones. A safety
property expresses that something bad never occurs. A temporal property in-
cludes progress and bounded liveness [IT]. Monitoring directives specify that a
property can be evaluated at different levels,i.e, program , module, statement
and so on.

The DESERT tool allows the automatic generation of distributed specification-
based monitoring systems for enhancing security and dependability in distributed
black-box components applications. The black-box nature of the components im-
poses that our events can be observable messages exchanged among them. The
DESERT language allows the definition of both the system model and the correct
system behavior. The system model is provided by means of an interface descrip-
tion language. This language permits to describe each component of the system in
terms of its name and the services that it requires/provides. The correct system
behavior is provided by means of a global automaton that describes the correct
messages exchange among components (i.e. interaction properties). As described
in [20] automata can describe safety and bounded liveness properties.

A monitoring system, based on the global automaton, gathers all messages
exchanged among components and verifies that such messages do not violate
the policies expressed by the global automaton. Our monitoring system is off-
line since it does not use the resources of the target system (in particular it is
implemented as an external observer). Moreover, it is synchronous since messages
are delivered only after interpretation.

Architectural level monitoring permits to obtain implementation-independent
description, however DESERT provides the basic mechanisms to add design
and implementation details into the properties descriptions. Moreover, as we
describe in Section Bl DESERT allows the definition of reaction policies tailored
for security and dependability purposes.

3 The DESERT Definition Language

In this section we describe the DESERT definition language that permits to
specify both the system model and the global automaton. The system model
specifies the components interfaces descriptions.

3.1 Components Interfaces Descriptions

This part is composed of a set of component interface declarations. A component
interface declaration is composed of: (i) the component name; (ii) a list of services
description.

A service description is either of the form !service Name(Parameters).return
Type or ?serviceNamel(Parametersl).returnTypel. The former declares that

A Distributed Monitoring System for Enhancing Security and Dependability 217

the component is a client of the service serviceName having the formal parame-
ters Parameters and the returned value type returnType. The latter declares
that the component provides the service service Namel to the environment.

?acquireC1Resource() int lacquireC2Resource() int
o1 ?setData(in double data) void 3 lacquireC1Resource() int

?getData() byte [] lgetData() byte []

<variables> int count; <variables> .

?sync() void Isync() void)
c2 IsetData(in double data) void c4 !acqu!reCZResource() nt

?acquireC2Resource() int lacquireC1Resource() int

9getData()byte [] lgetData() byte []

Fig. 5. Components interfaces

The Parameters is constituted by a sequence of the type T1 Dy X1 , To Do
Xo, ..., T, D, X,,, withn > 0 (n = 0 means an empty sequence of parameters).
T; is a label that can take one of the following values: in and out. in specifies
that the parameter X; is an input service parameter (i.e., it must be provided to
the service). out specifies that X; is an output service parameter (i.e., it contains
an output after the service execution). D; is the X; domain and defines the set
of values that the parameter can take.

Suppose that a component is a client (server) of the service !service Name
(Parameters) .returnType (?serviceNamel(Parametersl).returnTypel).The
label returnType (returnTypel) defines the set of values that the component
client (server) can receive (send) back after the serviceName (serviceNamel)
synchronous service invocation. We point out that the type of service invocation
(i.e. synchronous and asynchronous) is specified by means of a label that is pre-
fixed to the service declaration. Optionally, a user can add variables declarations
in the components interfaces descriptions.

In Figure[Blwe sketch part of the case study that refers to a cooling water pipe
distributed industrial application (see [2] for a detailed description). It concerns
the monitoring of messages exchanged among a set of components that collect
and correlate data on the amount of water that flows in different water pipes.
This water is used to cool industrial machinery. The water pipes are monitored
by the server components C'l and C2 that interact with Programmable Logic
Controllers (PLCs) in order to obtain the data related to each water flow. The
clients C3 and C4 request services on the servers in order to write/read the
water flow data.

C'1 can receive incoming requests of the ?acquireC1Resource() .int and ?set
Data(in double data).void services in order to allow the exclusive access to the
Area 1 data and to manually set its local data, respectively. C2 can receive in-
coming requests of the ?acquireC2Resource() .int and ?sync().void services in
order to allow the exclusive access to the Area 2 data and to accept a synchro-
nization request, respectively. Moreover, C2 can require the !setData(in double

218 P. Inverardi and L. Mostarda

data) .woid service to C'1 in order to send its data to C'1. In particular C2 sends
its data after the reception of a sync() request. C'3 and C4 are client of the ser-
vices exposed by the component C'1 and C2. Notice that we relate the variable
count to the component C2. We point out that this variable is used in the state
machine definition, i.e., it is part of the monitoring system definition.

The goal of the overall application is to ensure consistency on the water flows
data that are used for billing purposes. To this extent we define a state machine.

3.2 The Global Automaton

After the components interfaces descriptions, the DESERT program has to de-
scribe a state machine that defines the correct components communications.

In the following we introduce some notation useful to describe our automata.
Let us suppose that the C interface declaration defines a service of the type
IserviceName(Ty D1 X1, ..., T, D, X,).returnType (i.e., C is a client of the
serviceName service) and S exports the service ?serviceName(Ty Dy Xq, ...,
T, D, X,).returnType (i.e., S is a server of the serviceName service). The
notation C' ¢, x; is used to declare two instances (i.e.,c and z) of the component
C'. The symbol *’ denotes an unknown type of component (see case study of
Section [for examples).

In the following we describe the events that we monitor at architectural level.
Let us consider the declarations C' ¢; and S s; :

— IserviceName (X1, ..., X,) ¢ s defines an event that can be observed when ¢
performs the serviceName (X1, ..., X,,) service invocation on s. It is worth
noticing that when the invocation is executed the parameter X; ... X,, are
suitable instantiated by c.

— ?serviceName (X1,...,X,) ¢ s defines an event that can be observed when
s performs the serviceName (X1, ..., X,) service-receive invocation on s.

— If the serviceName service is synchronous we can define the symmetrical
invocation !serviceName s ¢ and ?serviceName s ¢, i.e., the answer to the
serviceName service observed on the server and client side, respectively.

The receive invocation ?serviceName(Xy, ..., X,) ¢ s has associated the de-
fault variables ?service Name.X;, with 1 < i < n, each of them contains the X;
parameter value when the invocation is performed at the s server side. The send
invocation !serviceName(Xy,...,X,) ¢ s has associated the default variables
IserviceName.X;, with 1 < i < n, each of them contains the X; parameter
value when the invocation is performed at the ¢ server side. If the serviceName
service is synchronous then the default variable !serviceName (7serviceName)
contains the serviceName returned value sent (received) by s (c). We point out
that all invocations that include the symbol * define the same variables (see [13]
for details).

Let p be one of the above invocations. Each transition of the global automa-
ton can be labeled with a piece of information of the form p[P]{code}. The label

A Distributed Monitoring System for Enhancing Security and Dependability 219

[P] is a predicate that the invocation p must verify, the field {code} a piece
of code executed when the transition is performed. In particular, as we are
going to see in section [7 a predicate is a means to avoid attacks/faults caused
by invocations with malformed formats (e.g., sql injection and buffer overflow)
while the code can be executed to perform more complex checks based on the
component variables.

A state machine describes the system traces that an external observer should
see in the case of correct components interactions. In particular, these traces
are related only to the services invocations defined inside the global automaton
alphabet.

lacquireC2Resource ¢2 ¢4 lacquireC2Resource ¢2 c4 .
[tacquireC2Resource 0] ['acquireC2Resource 1] ?acquireC2Resource c2 c4

o(4)—

%cqy,
rngReso °
0
rc@()\c4 8 lacquireC2Resource() ¢4 ¢2
s Cq <C2 o lacquireC2Resource() €3 ¢2
@!acquireCZResource() c3 c2 lacquireC2Resource() ¢4 ¢2 \j
%]
%setData(data) c2 cl !setData(data) c2 cl ?sync() c4 c2 @
. @ P [check(!setData data)] . {coun++; log(count)} o
<variables> C2 c2; C4 c4; C1 cl; C3 ¢3; </variables>
Fig. 6. Global automaton Fig. 7. Simple property

In Figure[d we show a portion of the state machine declaration that is related
to our case study [I3I2]. In this case we have the component instance ¢l of the
type C1, ¢2 of the type C2, ¢3 of the type C3 and c4 of the type C4. We can
observe that in the state 0 both clients ¢3 and ¢4 have the possibility to perform
an acquireC2Resource() service invocation on the server ¢2. In the case that ¢4
performs the invocation the state machine moves from state 0 to 1. We point out
that this invocation is observed at the c4 client side. In state 1 this invocation
is observed at the ¢2 server and the global automaton state can be changed
from 1 to 2. From the state 2 two possible transitions exit. One models the ¢2
acquireC2Resource service response when its returned value is equal to 0. This
is expressed by the condition lacquireC2Resource == 0 (e.g., this is the case of
server busy). The other one models the ¢2 acquireC2Resource service response
when its returned value is equal to 1. If the latter is applied then the state
machine moves to state 4, where the ¢2 services can be provided to the client c4.
Notice that each time the service sync() is received by ¢2 the related variable
count is updated. Moreover, the state machine does not include the description
of the service lget Data().byte[] and other components services (see Figure [). In
Figure [dwe show a more simple policy in which concurrent services invocations
are allowed. This is represented by multiple transitions that enter and exit from
the same state.

220 P. Inverardi and L. Mostarda

We remark that different global automata can define different security poli-
cies and can be used to concurrently monitor the components. However, in the
remaining we focus on a single automaton since all results can be easily extended
to multiple concurrent automata.

In the following we sketch strengths and weaknesses of the DESERT definition
language.

The DESERT language flexibility allows the definition of monitoring systems
in different contexts. For instance, in the context of CUSPIS project [21] user
services are implemented by a client (e.g. ¢) that performs invocations on finite
set of servers si,...,s,. Servers can interact with each other and with further
components. In this case a global system view is needed to ensure the correct-
ness of interactions scattered over several components. We have defined a server
side policy that characterizes client sessions in terms of both servers received
invocations (e.g. ?service Name(Parameters) ¢ s;) and servers performed invo-
cations (e.g. !serviceName(Parameters) s; s;). In the case of wireless sensor
networks (see [I] for details), the automaton can contain only invocations of the
form !serviceName(listO f Parameters) c¢ s (i.e., a client side policy). This is
the case in which mobile devices (e.g. sensors) send asynchronous service invo-
cations to unknown servers, therefore, we have to write client side policies.

If the state machine describes all possible services invocations we may incur
in the usual state explosion problem. However, the crucial property commonly
only interests a subset of the global system behavior. Moreover, it is worth notice
that the global automaton does not allow the definition of temporal constraints
so that DESERT is a tool unsuitable to model interactions with timeliness re-
quirements.

4 A Logically Centralized Monitoring System

A DESERT user defines the global automaton at the level of system integration,
i.e., she defines the correct components communications by having a global sys-
tem view. From the global automaton perspective it is easy to derive a logically
centralized monitoring system. The logically centralized monitoring system does
not have a concrete counterpart but its knowledge makes it easy to understand
the filters system generation (i.e., the distributed monitoring system implemen-
tation) that is hidden by the DESERT tool. Therefore for the sake of simplicity
we will describe the monitoring use and the reaction policies referring to a cen-
tralized approach. In Section [6l we show how the distributed implementation of
the centralized approach is automatically generated.

In the following we use the case study of Section Bl to describe all actions that
the centralized monitoring system can undertake, i.e., (i) send invocation accep-
tance; (ii) buffering action; (iii) receive invocation acceptance; (iv) forwarding
action;(v) anomaly detection action.

The logically centralized monitoring system has a buffer used to store the com-
ponents invocations it captures. Suppose that the monitoring system picks the
invocation lacquireC2Resource () ¢4 ¢2 up from its local buffer and the global

A Distributed Monitoring System for Enhancing Security and Dependability 221

automaton of Figure [@l is in state 0. Then the monitoring system can ’accept’
this invocation since there is a 0-exiting transition labeled with it and there is
not a predicate to be satisfied. Accept means that the monitoring system buffers
the invocation ?acquireC2Resource() c4 ¥ and changes the automaton state
to 1 (in the following this monitoring system activity will be referred to as send
invocation acceptance). In state 1 there is the possibility that the monitoring
system picks an invocation lacquireC2Resource() ¢3 ¢2 up from the buffer (i.e.,
the client ¢3 requires the access to the same ¢2 resources). This invocation cannot
be accepted since there is not a l-exiting transition labeled with it. Therefore,
the monitoring system checks the existence of a state reachable from 1 where the
following conditions hold: (i) there is an exiting transition ¢ labeled with the in-
vocation lacquireC2Resource() ¢3 ¢2; (ii) the predicate related to the transition
t is satisfied (in our case 0). In this case the monitoring system puts the invoca-
tion back to process it later (buffering action). By continuing our example, the
monitoring system can pick the invocation ?acquireC2Resource() ¢4 ¢2 up from
the buffer and accepts it by means of the l-exiting transition. In this case the
monitoring system forwards the acquireC2Resource invocation to the server ¢2
and changes the automaton state to 2 (receive invocation acceptance). Since the
service acquireC2Resource is synchronous the monitoring system has to wait
for the result ?TacquireC2Resource to put it in the buffer. In any automaton
state invocations that are not described in the global automaton are forwarded
without any check, e.g. all getData() service invocations are forwarded, (for-
warding action). An anomalous component invocation is detected when: (i) the
invocation cannot be accepted in the current automaton state (e.g. ¢) and in any
state reachable from g¢; (ii) the invocation was buffered and not consumed after
a finite amount of timdd; (iii) the invocation is related to services not present in
the interfaces definitions (anomaly detection action).

After an anomaly detection action our centralized monitoring system can un-
dertake a reaction policy. In the next section we describe all different reaction
policies that can be set by means of the DESERT tool. Different reaction poli-
cies allow the generation of monitoring tools for different areas, e.g. security,
dependability and enforcement (see Section [2I).

5 The DESERT Reaction Policies and the Application
Areas

In Figure [8 we show all reaction policies that can be set in order to generate
monitoring systems for different uses.

2 The buffering is needed since it is the global automaton that can (or cannot) define
when the related receive invocation must be delivered. This is strictly related to
wether or not the receive invocation is defined inside the global automaton alphabet.

3 The amount of time must be chosen by the user. In particular it can be assigned
at ’the global automaton level’ (i.e, all invocations must be consumed after a fixed
amount of time) and/or to each single invocation.

222 P. Inverardi and L. Mostarda

| — DESERT reaction policy—l

Non intrusive Intrusive
]
— | | |
Shunning Retry Termination Hybrid

Complete Partial Violation
logging logging logging

Fig. 8. DESERT reaction policies

The logging reaction policy permits to obtain a monitoring system that does
not affect the system behavior. Different levels of logging can be set up. The com-
plete logging allows the logging of all messages exchanged among componentsﬁ.
The partial logging permits to log all messages exchanged among components
that belong to the global automaton alphabet. The wiolation logging permits
to log all messages exchanged among components that violate the property ex-
pressed by the global automaton. For instance, the logging reaction policies can
support off-line and on-line testing. In the former case complete logs can be pro-
duced and analyzed in order to detect traces that violate the case tests. In the
latter case the monitoring system can produce a violation log in which all traces
violating the global automaton policy are recorded. In other words we can test
the run time system traces with respect to the global automaton ones.

The Shunning reaction policy can be partial and complete. In the partial
shunning the monitoring system logs the information details of any anomalous
message m that violates the property. When m has been logged, the monitoring
discards m and does not deliver it to the receiver. In the complete shunning
the monitoring system registers the sender of the message m and denies all
future messages send by it, i.e., the monitoring system isolates the component
that performed the violation. The shunning reaction policies can be used in the
field of security [I] in order to isolate the component that attacks the system.
However, it can generate components anomalous behaviors as a consequence of
no returned value to them, therefore shunning cannot be applied in order to
enhance the system fault tolerance.

In the retry reaction policy the monitoring system discards and logs any mes-
sage m that mismatches the correct behavior. After m has been discarded the
monitoring returns an error to the component that has sent m. An error is a
value that a component recognizes either as an exception or a failure condition.
The retry reaction policy can be a means to improve the system fault tolerance.
The error detection mechanism is provided by our monitoring tool that detects a
component misbehavior. Moreover, the error value returned can be a simple re-
covery mechanism to let the component try again. It is worth noticing that while
the shunning policy can be always applied without having any type component
knowledge the retry reaction requires that the component explicitly declares a
handled returned error value.

4 We log for each invocation: time, service name, parameters or returned value, sender
and receiver.

A Distributed Monitoring System for Enhancing Security and Dependability 223

Termination refers to the monitoring system ability to terminate the com-
ponents generating the anomalous behavior. This reaction can be followed by
a reinitialization phase in which components can be configured and restarted.
Notice that in this case the monitoring system must have a mechanism to stop
and restart a component execution.

Hybrid reaction policies include the case in which different reaction policies
are assigned to different invocations. For instance, the shunning policy can be
associated to each invocation related to services that are critical for the system
security. The retry policy can be used for invocations that can be performed
after the correct system login, i.e., this policy can be used to recover authorized
components.

We can observe that both retry and shunning policies produce a monitor-
ing system that acts like an enforcement mechanism (EM). As defined in [20]
enforcement mechanisms compare a formal specification with the system steps.
When there is a violation of the formal specification an EM can either termi-
nate the system execution or replace an unacceptable execution step with an
acceptable one.

6 The Distribution Process

The implementation of the logically centralized monitoring system is not prac-
tical in systems composed by a large number of distributed components and of
interactions properties, where the parsing efficiency, scalability and failure can
become relevant issues. Moreover, already existing legacy distributed systems
could not allow the addition of a new component which monitors the information
flow in a centralized way. The DESERT solution is an algorithm to automati-
cally distribute the logically centralized monitoring system (i.e., the 'centralized’
DESERT program) on each component of the system. It performs this genera-
tion by decomposing the global automaton in a set of local automata that are
assigned one for each component of the system. A local automaton constitutes
the basis to build a filter that locally monitors its component communications.
The set of filters taken as a whole system constitutes a distributed monitoring
system “equivalent” to the central one.

In Figure[@ we show the basic components of the DESERT tool that allow the
generation of the monitoring system implementation. A graphical user interface
allows the description of both components interfaces and state machines. These
descriptions are stored in XML format.

The front end is composed of the following components: the local automaton
generator, the parser and the semantic controller. The local automaton generator
component takes in input the XML file and a component name (e.g. C2). It
forwards the XML file to the parser and semantic component that performs all
syntax and semantic checks, respectively. In the case that there are not errors
the local automaton generator generates the XML specification of the C2 local
automaton. We remark that this process can be performed locally on the host
where C2 resides on.

224 P. Inverardi and L. Mostarda

DESERT TOOL
Gul — (VR
.
SYNTACTIC sEMANTIc ~ FRONTEND
CHECK LOCAL CHECK
SEMANTIC
PARSER | (—— 1| AUTOMATON
GENERATOR CONTROLLER
s | CORBA BACK END |
C2 LOCAL AUTOMATON [) CZC'glE)TEER
SPECIFICATION | RMI BACKEND |

Fig.9. The DESERT C2 filter generation

The C2 local automaton (in the following denoted with Acg) is part of the
global automaton enriched with transitions labeled with synchronization mes-
sages (see Figure [[0) that in the following will be referred to as dependencies
messages. These transitions are applied by the filter C'2 to send (receive) informa-
tion to (from) other filters. Dependencies allow the simulation of the centralized
monitoring system. In [T2IT3] we show all formal proofs, we discuss the overhead
introduced by such synchronization messages and we show how it does not con-
stitute a problem since they are small in size (i.e., they are integer). Moreover,
in [I3] we also point out that both the time required to exchange the synchro-
nization messages and their parsing can slow the application response time (i.e,
the DESERT tool enhance security and dependability issues at the expense of
the system response time).

The C2 local automaton specification is platform independent and may be
translated into different filter implementations. For instance for distributed ap-
plications where the components communicate by using the CORBA middle-
ware we have implemented a CORBA back-end. This back-end automatically
produces a new CORBA component (the filter) that is interposed between the
component communications and the environment. The filter exposes all services
that the component requires and provides to the environment (see Figure [IT]).
The entire process of filter generation is polynomial on the global automaton
size. We point out that the filters work at the middleware level therefore we do
not require components source code.

In the following we sketch the local automata generation and we discuss the
filters actions. For the sake of presentation we introduce some notation. We use
the notation ¢’ = 6(¢,p) to denote a global automaton rule that exits from
the state ¢, enters in ¢’ and is labeled with the invocation p. We denote with
¢ = 6c(q,p) the same rule projected on the A¢ local automaton. We denote
with k(q, ¢')(p) an integer that uniquely identifies the global automaton rule ¢’ =
6(q,p). We use P(q,q")(p) (C(q,q')(p)) to denote the predicate (code) related to
the rule ¢’ = 6(q, p)-

A Distributed Monitoring System for Enhancing Security and Dependability 225

el ——
m B_FC2_{FC4} 12_FG2_{FG4)
ﬂ tacquireC2Resource_C2_C4 tacquireC2Resource_C2_C4
{!acquireC2Resource == 0} {lacquireC2Resource = 1}
Co C2 local 2
provided Filter :> £
services buffei
C2 required services ‘ @"”—Fm—':cz) v
ﬂ ﬁ Ny
C2 C2 local automaton
Component

Fig. 10. The behavior of the run-time filters

Local automata are generated by performing two phases: local automata gen-
eration and dependencies generation.

In the local automata generation phase each rule of the global automaton is
projected on a local automaton. Suppose that the global automaton defines the
rule ¢ = 6(¢,p) and p is an invocation locally observed on the component C.
Then this phase adds the rule ¢ = 6(q, p), the predicate P(q,q')(p) and the code
C(q,q")(p) to the Ac local automaton. In other words, looking at the global
automaton, interactions that happen locally on a component C are projected
on A¢. For instance in Figure we show the Ags local automaton related
to our case study. It is worth noticing that it contains only rules labeled with
invocations locally observed on the component C2.

The local automata obtained after this phase are not sufficient to realize the
correct monitoring. A local automaton Ac can be constituted by disconnected
sub-automata. The filter F'C' cannot be able to choose the right sub-automaton.
Moreover, given a sub-automaton it cannot establish the next one. Our solution
is to enrich local automaton with dependencies information and to link the sub-
automata with e-moves.

A dependency can be of the form !k(q1,q2)(pl) FC {FC1,...,FCn} and
?k(qs,q4)(p3) FCi FCj. The former (outgoing dependency) is always related
to the A¢ rule g2 = 6¢(q1,pl) and is used by the filter F'C' to inform the
filters F'C1,..., FCn that it has applied such local rule. The latter (incoming
dependency) is used by the filter FCj to receive the integer k(gs,qs)(p3) sent
by the filter F'C'i.

The dependencies generation phase is used to add transitions labeled with
dependencies to the local automata. In the following we sketch the different
sub-phases that compose the dependency generation.

In the first sub-phase the dependencies generation considers each state g of
the global automaton that is exited by transitions projected on different local au-
tomata. Suppose that ¢ is exited by the transitions ¢; = 6(q, p;), with 1 < i < n,
that are projected on the n different local automata AC'. In this case the depen-
dencies generation phase considers each automata AC7 and relates the outgoing

226 P. Inverardi and L. Mostarda

dependency !k(q,q;)(pi) FCi {FC1,...FCn} to its rule ¢; = ¢i(q,pi), with
q # q;- Moreover, the phase considers each filter F'Cj, with j # i, and adds
to Acj the rule ¢; = 6¢;(q, ?k(q, ¢:)(pi) FCi FCj). Suppose that the local au-
tomata of the filters F'C1,... FCn are in state ¢ and the filter F; applies the A¢;
rule ¢; = 6¢i(q, pi). In this case F; has to parse the outgoing dependency related
to this rule, i.e.,it sends the integer k(q, ¢;)(pi) to the filters F'C1, ... FCn. Each
filter Fj, with j # 4, can accept the integer by applying the transition labeled
with the related incoming dependency (i.e., ¢; = 6c;(q, ?k(q, ¢;)(pi) FCi FCy)).
In other words, dependencies ensure that filters synchronize with each other so
that exactly one ¢-exiting transition, labeled with an invocation, is accepted.
This validates the constraint imposed by the global automaton. In the case that
different filters, at the same time, want to apply a g-exiting rule a leader elec-
tion can be performed to elect the one that will apply its local rule. We point
out that synchronization among filters is required only when the states of the
applied rules are different.

In the second sub-phase the dependencies generation considers each rule ¢’ =
6(q,p), with ¢ # ¢/, projected on a filter F'C' and all filters FC1,... FCn where
a ¢'-exiting rule has been projected. The phase relates to the rule ¢’ = 6(q,p)
the dependency 'k(q,¢')(p) FC {FC1,... FCn} and for each local automaton of
the filter FC4, with 1 < i < n, defines the rule ¢’ = é¢4(q, ?k(q, ¢')(p) FC FC1).
Each filter FC'i applies this dependency when F¢ has applied the rule ¢’ = 6(gq, p)
and parsed the related dependency 'k(q,¢')(p) FC {FC1,...FCn}. In this way
the filters FC1,... FCn synchronize to the state ¢’ and the ordering imposed
by the global automaton is respected, i.e., ¢’-exiting rules can be applied only
after the g-exiting rule is applied.

Finally, e-moves can be added to each local automaton in order to correctly
link eventually disconnected states.

The Fe-filter activities are similar to the ones of the logically centralized
monitoring system. It checks that both C'local invocations and incoming depen-
dencies verify the policy defined by the local automaton. It has a buffer where it
can store all C-local invocations and all incoming dependencies. Moreover, it can
undertake all reactions policies defined by the logically centralized monitoring
system. In the following we sketch the F'C filter activities by assuming that its
Ac local automaton is in state q.

Suppose that the filter F'C' picks the invocation !servicName(parameters)

C S from its buffer, such invocation labels a g-exiting transition and verifies
the related predicate. Then F'C' updates the A state, forwards the invocation
to the filter F'S and parses the dependencies (if any) related to such rule (send
invocation acceptance).

Suppose that the filter F'C' picks the invocation ?servicName(parameters)

S C up from its buffer, such invocation labels a g-exiting transition and verifies
the related predicate. Then F'C' updates the A state, forwards the invocation
seviceName to component S and parses the dependencies (if any) related to
such rule (receive invocation acceptance). We point out that when the service is

A Distributed Monitoring System for Enhancing Security and Dependability 227

synchronous the filter waits for the service answer and puts it back in its local
buffer.

The filter forwards without any check, invocations that are not defined inside
the global automaton alphabet (forwarding action). It puts back in the buffer,
invocations that cannot be accepted in the current state ¢, but can be accepted
in a state reachable from ¢ (buffering action). It accepts each incoming depen-
dency that labels a transition exiting from the current automaton state(incoming
dependency acceptance). Finally, FC' locally detects the anomalous interactions
when: (i) the invocation cannot be accepted in the current automaton state (e.g.
q) and in any state reachable from g¢; (ii) the invocation was buffered and not
consumed after a finite amount of time; (iii) the invocation is related to services
not present in the interfaces definitions; (iv) an incoming dependency cannot be
accepted (anomaly detection action).

13 FC2 {FC4}) 12 FC2 {FC4})
tacquireC2Resource C2 C4 lacquireC2Resource C2 C4

=~

{lacquircC2Resource 0} {lacquireC2Resource 1} ‘:

IQ

-

oF :
(@—() 33
7setData(data) 77 FC2 FC1 27
c2 c &3
8:

C1 local automaton C2 local automaton 1setData(data) C2 C1

{ check(!setData data) }
?3 FC2 FC4 ?2 FC2 FC4
2

) xCy
tacquireC2Resource() C3 C2
110 FC3 {FC4 FC2}

10 FC4 {FC3 FC2} I
lacquireC2Resource() C4 C2 Jo <“ \\‘\o\\
C4 local automaton N

C3 local automaton

Fig. 11. The local automata

In Figure [[I] we show part of the local automata related to our case study
where we denote with eps an ¢ move. When the distributed monitoring sys-
tem starts, all local automata are in state 0. Filter F'C'3 and FC4 synchronize
so that exactly one of them performs its local invocation. Suppose that FC4
gains the right. Under this assumption FC4: (i) sends the integer 0 to the fil-
ters F'C3 and FC2; (ii) sends the message acquireC2Resource() to the filter
FC?2; (iii) changes the local automaton state to 1. Both filters FC2 and FC3
receive the dependency 0 and move to the state 1. We remark that any FC3
invocation has to be buffered so that mutual exclusion is ensured. We can ob-
serve that the service lsetData(data) C2 C1 can be provided after the chain
of invocations lacquireC2Resource() C4 C2, TacquireC2Resource() C4 C2,
lacquireC2Resource C2 C4, \sync(), ?sync() is performed.

228 P. Inverardi and L. Mostarda

We remark that the local automata generation and the filters generation is
hidden to the user by the DESERT tool. The user has to describe the centralized
specification (i.e., system model and global automaton) and apply the DESERT
tool in order to generate the filters system. As it is shown in [T3IT2] the filters
simulate the logically centralized monitoring system. Filters realize a peer-to-
peer minitoring that enhances security and fault tolerance w.r.t. the centralized
implementation. This is consequence of the fact that a distributed implementa-
tion has not a single point of vulnerability. Moreover, when a filter fails unrelated
filters can continue their activities.

7 The Case Studies

In this section we show different case studies where we have applied the DESERT
tool. These case studies are related to different applications that run on both
mobile and wired infrastructures.

In the following we sketch how DESERT can be applied to enhance the secu-
rity in a component based application.

Component based software development (CBSD) aims to build a system from
existing components. In contrast to traditional development, where system inte-
gration is often a marginal aspect, component integration is the centrepiece of
CBSD. Developers have to face problems of components adaptation and ensure
an acceptable security and dependability level. It is a widely accepted fact that
components integration problems cannot be always addressed at development
time. Components can be poorly documented so that the integration developers
can make mistakes in the integration process. Components can contain bugs or
malicious code, therefore security flaws are introduced. Components can be em-
ployed not exactly in the contexts for which they are intended, therefore, faults
are introduced at the integration level. A component may have more function-
alities than the developers know about and so he/she cannot understand the
implications of introducing the component inside the system (see [39] for an
extended survey).

Unsolved integration problems often result in the possibility of anomalous
components interactiond]. The DESERT tool can be used to generate monitoring
systems providing a further layer that enhances the security of the integration
code.

For instance in the case study presented in this paper we have monitored
the components to ensure the consistency of water flow data. In this case study
components are written in java so that tools to obtain the source code can be

5 Notice that very often it is not possible to establish the nature of the component
anomalous interactions. As it is described in [I0] an external observer cannot dis-
tinguish when a component is interacting in anomalous way as a consequence of
malicious intents or internal fault. However, from our point of view we can deal with
such violations with different reaction policies. In particular, when the security is
a crucial aspect we can isolate anomalous components. In the case that the fault
tolerance must be enhanced we can recover such components.

A Distributed Monitoring System for Enhancing Security and Dependability 229

used. This permits to analyze the components logic and produce rogue imple-
mentations that exploits bugs and overcomes the static security measures. In
the simulation phase rogue clients were produced in order to: (i) exploit the
components vulnerabilities; (ii) perform unauthorized access; and (iii) simulate
race conditions. Furthermore, malicious clients were used to obtain fake water
flow data. Local filters were able to discover such anomalous behavior (see [13]
for details), apply the DESERT shunning reaction (see Section [for details),
isolate the attackers and alert the system manager.

In [2] we have used DESERT to automatically assemble a set of components.
In this context, one of the main goals is to compose and eventually adapt loosely
coupled independent components to make up a system [22I23]. Building a dis-
tributed system from reusable or COTS components introduces a set of prob-
lems, mainly related to compatibility and communication. Often, components
may have incompatible or undesired interactions. One widely used technique to
deal with these problems is to use adaptors. They are additional components
interposed between the components forming the system that is being assembled.
The intent of the adaptors is to moderate the communication of the compo-
nents in a way that the system complies only to a specific behavior. In [2] we
use the SYNTHESIS tool to produce a global automaton specification (i.e. a
centralized adaptor) that forces the system to exhibit only a set of safe or de-
sired behaviors. For example, the adaptor forces the system to exhibit only the
subset of deadlock-free and/or explicitly specified wanted behaviors. Such spec-
ification is automatically distributed and implemented by the DESERT tool by
using the retry policy. In this case the monitoring system acts like an enforce-
ment mechanism that ensures the policy described by the global automaton.
The retry policy is used to enhance the system fault tolerance since it allows the
anomalous components to continue their execution.

In [I] we have used DESERT to provide intrusion detection facilities in the
the CoP protocol ﬂﬂlﬁ CoP is a protocol used for routing on mobile wireless
sensor networks (WSNs).

In the following we summarize attacks that can be undertaken in wireless
sensor networks (see [25] for an extended survey).

1. Compromised Node: Due to an external intervention, a sensor may be com-
promised and can be used to subvert the correct WSN behavior.

2. False Node: Additional fake nodes could be thrown in the sensed area
sending false data or blocking the passage of true data.

3. Node Malfunction or Outage: A node in a WSN may malfunction and gener-
ate inaccurate or false data or it could just stop functioning hence compromising
used paths.

4. Message Corruption: Attacks against the integrity of a message occur when
an intruder inserts itself between the source and the destination and modifies
the contents of a message.

5 The research was partially funded by the European project COST Action 293,
“Graphs and Algorithms in Communication Networks” (GRAAL). Preliminary re-
sults contained in this paper appeared in the [1].

230 P. Inverardi and L. Mostarda

5. Denial of Service: A denial of service attack may take several forms. It may
consist in jamming the radio link or it could exhaust resources or misroute data.

Generally speaking, state machines can be used to face the above attacks
(see [RUT24] for details). For instance, messages corruption can be avoided by
means of the predicates that define the correct message format. Denial of service
can be detected by bounding the number of messages in each automaton path.
Moreover, the automaton paths permit to describe the correct ordering among
invocations. In the following we show how the DESERT tool has been used to
address some of the above attacks by means of the CoP protocol [24]. To this
extent we have enhanced the DESERT definition language with invocations that
can contain the component type names. Suppose that C' and S are two different
types of components and their interfaces are defined by using the DESERT
notation (see [for details). The invocation !serviceName (X1,...,X,) C S
defines that one of the possible instances of the component C is sending the
service Name asynchronous invocation to the component instances of the type S.
The invocation ?serviceName (Xi,...,X,) C S defines that a set of instances
of the component S can receive the asynchronous invocation of the service Name
service.

In the field of location-awareness and clustering protocols like CoP, we model
a mobile WSN by a set of sensors AH = {s1,82,...,8:}. Let L C AH be
a subset {l1,l2,...,l,} of sensors identifying the clusterhead of a given pro-
tocol P. In other words, the sensors in L characterize a set of areas Ar =
{Ary, Ara, ..., Ary} (clusters) where each area Ar; represents the portion of
the sensed area where the corresponding [; plays the clusterhead role. There can
be different roles according to P, let R = {C},Cs,...,Cy,} be the set of roles.
Each C; has associated an interface that characterizes all messages sent /received
by sensors playing that role. It is worth noticing that in this case role is used as
synonymous of component type.

In Figure[I2] we show the four types of roles that each sensor can play and the
corresponding interfaces according to the described CoP protocol. Considering
an area denoted with Ay gy we define the Out-range, the In-range and the
Clusterhead roles that are played by sensors residing in it, and the Extern role
representing the sensor playing the clusterhead role inside an adjacent Ay gy
area.

The role Out-range models a sensor s located in a position that is inside the
Ay but at a distance greater than ds (ds is a natural number) from the Ay gy
center. This role defines an interface composed by the ?pos(double x,double
y).void and !send(double x,double y,int dest, char [| msg).void asynchronous
services. ?pos(double x, double y).void specifies that the sensor s can receive the
incoming message pos(double x, double y) used to set up its initial position. The
parameters double x and double y are suitably instantiated with the coordinates
of s. Isend(double x,double y, int dest, char || msg).void specifies that s can send
the message msg towards the sink dest. The parameters and y are instantiated
with the current position of s and dest is an integer that denotes a sink.

A Distributed Monitoring System for Enhancing Security and Dependability

?pos(double x double y) void

| send(double x double y int dest char [] msg) void

<variables> double posx; double posy; string role; <variables>

A ?pos(double x double y) void

Out range VGN ! leader(double x double y) void

! send(double x double y int dest char]
msg) void

?no leader() void

Extern ?leader(double x double y) void

In range

! no leader() void
! forward(double x double y int dest char [] msg) void
Cluster ? forward(double x double y int dest char [] msg) void
Head ? send(double x double y int dest char [] msg) void
<variables> double posx; double posy; string role; <variables>

Fig.12. The CoP roles

Ipos(double x double y)
* Qut range [posx=x ; posy =y]

{(Bsw)xayo} pesyisisn 0 ebuey u
[14eys 1sp Ju A e gnop x o gnop)puss

Yforward(double x double y int dest char []
msg) ClusterHead Extern{chek2(msg)}

(Bsw

7, =
| leader(double x double y) In Range O/Zb
In Range{check(x y)} [role = “Cluster Head"] 'o& S ‘\,‘\}
% T EREN
R o
L3

Fig. 13. Global Automaton

231

<variables> double posx; double posy; string role; <variables>

{(Bsw)sjeyo} peanieysn 9 ebuey INQ
(Bsw [] 1eyo 3sep jJu A 8 gnop X 8 qnop)puss

232 P. Inverardi and L. Mostarda

The role In-range models a sensor s located in a position inside an Ay gy
and at distance at most ds from the corresponding center. This role adds to
the Out-range role the following services: lleader(double x, double y).void, Tno—
leader().void and ?leader(double x,double y).void. The service lleader(double
x, double y).void specifies that the sensor s can send the message leader(double
x, double y) in order to become clusterhead. The parameters double x and double
y are suitably instantiated with the coordinates of s. ?no — leader().void is
implemented by s in order to accept the notification sent by the clusterhead
when it leaves its role. ?leader(double x,double y).void is used by s to receive
the notification of a sensor s’ that requires to be clusterhead. The parameters
double x and double y are suitably instantiated with the coordinates of s’.

The role Clusterhead is played by a sensor s providing the forward of messages
towards the right sink. This role defines the following services: Ino—leader().void,
? forward(double x,double y,int dest, char [| msg).void, |forward(double
x,double y,int dest, char [| msg).void and ?send(double x,double y,int dest,
char [] msg).void. The no— leader().void service specifies that the sensor s can
send the asynchronous message no — leader() to the environment. This message
is sent by s in order to leave its clusterhead role due to its movement or to
its draining battery. ?forward(double x,double y,int dest, char [| msg).void
implements the service used by s in order to receive the message msg. This
message is forwarded by a clusterhead s’ that resides in an area surrounding the
one of s. The parameters z and y denotes the position of the clusterhead s’ and
dest encodes the sink. The service ! forward(double x, double y,int dest, char ||
msg).void is used by s in order to forward the message msg towards the sink
dest. The parameters x and y denotes the position of s. The service ?send(double
x, doubley, int dest, char [] msg).void is used by s in order to receive a message
msg sent by a sensor s’ residing inside the Ay gy. The parameters z and y
denotes the position of s’ and dest is an integer that denotes a sink.

The role Extern models one of the clusterheads surrounding the current
Ayen.

All roles have associated the real numbers x and y used to store the current
position of the sensor and the string role that encodes the current role played
by the sensor.

Starting from the description of the CoP protocol we now point out some
basic properties that should be guaranteed in order to obtain a fair behavior of
the protocol.

1. For each area Ay gy there must be at most one sensor playing as cluster-
head.

2. When a finite amount of data has been collected by a clusterhead, it must
be forwarded in the correct direction.

3. A clusterhead that changes its status to normal sensor due to a movement
or because of the draining battery has to forward all the collected messages
before its movement.

4. All messages forwarded by a clusterhead have to be received by the clus-
terhead of the adjacent VGN area.

A Distributed Monitoring System for Enhancing Security and Dependability 233

5. When a clusterhead leaves its role a new sensor (if any in the area) has to
take its role.

We formalize these properties by defining a state machine that will be given
in input to our tool in order to produce the distributed “patch” for the sensors
participating in the CoP protocol.

Figure shows the Global Automaton related to the sensors based system
of Figure This automaton defines the correct sequences of messages inside
each Aygn. At the beginning (state ¢0) all the sensors are informed about their
positionsﬂ. According to their position, each sensor sets its local variable role.
The In-Range sensors candidate themselves to become leader. Once the Clus-
terHead has been elected, the system moves to state q1 and the real interaction
can start. This transition, in practice, realizes property 1. Property 2 is realized
by the path ¢1, g2, ¢3. In this example we fixed the ”finite amount of data” by
means of a maximum of three collected messages after which the clusterhead
necessarily forwards them. Property 3 is realized by means of transition ¢1, ¢5,
in fact, if the system state is ¢l there are no messages stored in the clusterhead.
When data is forwarded, it is received by the Extern role, i.e., some clusterhead
of another Ay oy on the way to the specified sink[§ And this realizes property 4.
Finally, property 5 is valid by means of transition g1, ¢5. From ¢5, in fact, a new
ClusterHead must be elected before any other communication can occur] Note
that, when a ClusterHead receives a forward (transition g1, ¢6), it necessarily
has to forward it (transition ¢5,q1).

Concerning the predicates, checkl(msg) is used to verify the correct format
of the message msg forwarded by the ClusterHead. This predicate permits to
check that msg is not a buffer overflow attack. The check2(msg) is similar to
the above one, however it adds a test verifying that msg is equivalent to the
compression of the two messages previously received by the ClusterHead. The
predicate check(x,y) verifies that the leader is at distance at most ds from the
Ay gy center.

We have used the DESERT tool to automatically generate a filter for each
sensor. Each filter is constituted by a few lines of code installed in the sensors.
This realizes a distributed system that locally detects violation of the sensors
interactions policies and is able to minimize the information sent among sensors
in order to discover attacks across the network.

" It is worth notice that the position is informed by means of the invocation pos that
exits from the state 0. In particular this invocation is performed by a component
not modeled inside the system (i.e., the satellite component) therefore we use the
symbol *” in the sender field.

Note that, in our example, while a clusterhead is collecting messages (i.e., the system
is either in g2 or ¢3 or ¢4), it is not allowed to receive a forward. This, in fact, can
happen only at g1. In order to not waste messages, this means that, according to the
scheduling at the MAC layer, there is some time that is a priori set up. During such
a time a clusterhead can wait for other messages without incurring in any forward.
Again, in order to not waste forward messages we may think of a buffer for the
In-Range roles in which a forward is temporarily stored till a new ClusterHead is
elected.

234 P. Inverardi and L. Mostarda

In [I] we show how our method affects the performance of the CoP protocol.
The experiments are performed running the powered protocol over hundreds of
random instances of mobile WSNs. We show the overhead in terms of consumed
energy and in terms of performed instructions by the filtered sensors. The ex-
periments also show the estimated percentage reduction of the network lifetime
respect to the original CoP protocol.

£ —NODS ----IDS| £ —NOIDS ----IDS
ﬁ'm EIZO
=z 0 o 100
] %5

O m = 80 \
3 el e
5| 40 g 40
3 20 o 20—
< 0 . : ®w o T T T T : :
o w

messages number 78 100 3 messages number 80 100

Fig. 14. Average of the residual compu- Fig.15. Average of the residual energy
tational power depending on messages ex- depending on messages exchanged inside
changed inside an Ayan an Avan

In Figure 4l we show the lifetime of the system inside an Ay . Considering
each kind of message of the sensors as a different set of instructions, we show
the overhead in terms of percentage of computational power loss. The cost of
ensuring the normal protocol behavior in terms of number of instructions is in-
creased, on average, around 24%. Notice that transmission /receptions operations
are much more expensive than local computations. According to the consump-
tion values expressed in [20124], transmitter and receiver electronics consume an
equal amount of energy per bit, namely 5nJ/bit. While the energy to support
the signal above some acceptable threshold against power attenuation caused by
the distance is just 100p.J/bit/m?.

In Figure [[0 we show that, on average, the percentage of the draining of the
sensors batteries inside an Ay gy is increased by around 20%.

Concerning the detection of attacks we detect any behavior that violates the
property expressed by the global automaton. We use the DESERT shunning pol-
icy in order to isolate the attacker. In particular each malicious node is isolated
by its filter and by the filters of all surrounding noded!d.

8 Conclusions and Future Works

In this work we presented the DESERT tool that allows the automatic generation
of distributed monitoring systems for enhancing security and dependability at
architectural level.

10 When the filter of a sensor is compromised other surrounding filters detect and

discard the anomalous invocation. Moreover, they observe with each other in order
to send exactly one alert towards the sink.

A Distributed Monitoring System for Enhancing Security and Dependability 235

An architectural level definition language permits to specify both the system
model and the correct system behavior. The system model is provided by means
of an interface description language. The correct system behavior is provided by
means of state machines. These ’centralized’ specifications are used by the front-
end and the back-end of the DESERT tool in order to generate a distributed
monitoring system implementation. The monitoring system is constituted by one
filter for each component that locally detects violation of the global specification.

DESERT has been used for applications running on both mobile and wired
infrastructures.

In future work we are developing more complex detection and recovery mech-
anism. It can happen that the retry reaction policy causes a condition in which
the same component retry several times as a consequence of the same condition
error. Moreover, very often the component generating the anomalous behavior
does not always correspond to the source that triggered the erroftl]. In both
cases we exploit the integration level view provided by the global automaton.
We analyze the state reached in the global computation so that we can identify
the sources of errors and we can recover several distributed components.

References

1. Inverardi, P., Mostarda, L., Navarra, A.: Distributed IDSs for enhancing security
in mobile wireless sensor networks. In: IEEE International Workshop on Perva-
sive Computing and Ad Hoc Communications (IEEE PCAC’06), IEEE Computer
Society Press, Los Alamitos (2006)

2. Inverardi, P., Mostarda, L., Tivoli, M., Autili, M.: Automatic synthesis of distrib-
uted adaptors for component-based system. In: Proceedings of the 21st Automated
Software Engineering (ASE) Conference (2005)

3. Lindqvist, U., Jonsson, E.: A map of security risks associated with using cots.
Computer 31, 60-66 (1998)

4. Orset, J.M., Alcalde, B., Cavalli, A.: An EFSM-based intrusion detection system for
ad hoc networks. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707,
Springer, Heidelberg (2005)

5. Ko, C., Ruschitza, M., Levitt, K.: Execution monitoring of security-critical pro-
grams in distribute system: A specification-based approach. IEEE (1997)

6. White, G.B., Fisch, E.A., Pooch, U.W.: Cooperating security managers: A peer-
based intrusion detectionn system. IEEE Network (1996)

7. Stillerman, M., Marceau, C., Stillman, M.: Intrusion detection for distributed ap-
plications. Communications of the ACM (1999)

8. Eckmann, S.T., Vigna, G., Kemmer, R.A.: Statl: An attack language for state-
based intrusion detection. Journal of Computer Security 10, 71-104 (2002)

9. de Lemos, R., Gacek, C., Romanovsky, A.: Architectural Mismatch Tolerance. In:
Architecting Dependable Systems. LNCS, vol. 2677, pp. 175-196. Springer, Hei-
delberg (2003)

10. Avizienis, A., Laprie, J., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy
of Dependable and Secure Computing. IEEE Transaction on Dependableand Secure
Computing 1, 11-33 (2004)

1 In this case a severe reaction policy would terminate several components.

236

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

P. Inverardi and L. Mostarda

Delgado, N., Gates, A.Q., Roach, S.: A Taxonomy and Catalog of Runtime
Software-Fault Monitoring Tools. IEEE Transactions on Software Engineering 30,
859-871 (2004)

Inverardi, P., Mostarda, L.: A distributed intrusion detection approach for secure
software architecture. In: Morrison, R., Oquendo, F. (eds.) EWSA 2005. LNCS,
vol. 3527, pp. 168-184. Springer, Heidelberg (2005)

Mostarda, L.: Distributed detection systems for secure software architectures,
Ph.D, Thesis in computer Science, University of L’Aquila (2006)

Porras, P.A., Neumann, G.P.: Event monitoring enabling responses to anomolous
live disturbances. Proc. of 20th NIS Security Conference (1997)

Snapp, S.R., Dias, J.B.G.V., Goan, T., Heberlein, L.T., Ho, C., Levitt, K.N.,
Mukherjee, B., Smaha, S.E., Grance, T., Teal, D.M., Mansur, D.: Dids (distrib-
uted intrusion detection system) - motivation architecture and early prototype. In:
Proc. 14th National Security Conference vol. 1, pp. 361-370 (1997)

Vigna, G., Kemmerer, R.A.: Netstat: a network-based intrusion detection system.
Journal Computer Security 7, 37-71 (1999)

Javitz, H.S., Valdes, A.: The nides statistical component description and justifica-
tion. Technical report - Columbia University (1994)

Vaccaro, H., Liepins, G.: Detection of anomalous computer session activity. In:
Proc. of the 1989 Synopsium on Security and privacy, pp. 280-289 (1989)

Sen, K., Vardhan, A.,; Agha, G., Rosu, G.: Effecient decentralized monitoring of
safety in distributed system. In: ICSE (2004)

Schneider, F.B.: Enforceable security policies. ACM Trans. on Information and
System Security 3, 30-50 (2000)

FEuropean Commision 6th Framework Program - 2nd Call Galileo Joint Undertak-
ing: Cultural Heritage Space Identification System (CUSPIS),
http://www.cuspisproject.info

Crnkovic, I., Larsson, M.: Building reliable component-based Software Systems.
Artech House, Boston, London (2002)

Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, Reading (2004)

McCann, J.A., Navarra, A., Papadopoulos, A.A.: Connectionless Probabilistic
(CoP) routing: an efficient protocol for Mobile Wireless Ad-Hoc Sensor Networks.
In: IPCCC (2005)

Perrig, A., Stankovic, J., Wagner, D.: Security in wireless sensor networks. Com-
mun. ACM 47, 53-57 (2004)

Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-Efficient Communi-
cation Protocols for Wireless Microsensor Networks. In: Proc. of the Hawaiian Int.
Conf. on Systems Science (2000)

http://www.cuspisproject.info

	A Distributed Monitoring System for Enhancing Security and Dependability at Architectural Level
	Introduction
	Monitoring Tools at Glance: Concepts and Terminology
	The DESERT Definition Language
	Components Interfaces Descriptions
	The Global Automaton

	A Logically Centralized Monitoring System
	The DESERT Reaction Policies and the Application Areas
	The Distribution Process
	The Case Studies
	Conclusions and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

