
PICO-MP: De-Centralised Macro-Programming for
Wireless Sensor and Actuator Networks

Naranker Dulay
Department of Computing
Imperial College London

London, UK
n.dulay@imperial.ac.uk

Matteo Micheletti
Computer Science Department

University of Camerino
Camerino, IT

matteo.micheletti@unicam.it

Leonardo Mostarda
Computer Science Department

University of Camerino
Camerino, IT

leonardo.mostarda@unicam.it

Andrea Piermarteri
Andrea Piermarteri

Computer Science Department
University of Camerino

Camerino, IT
andrea.piermarteri@unicam.it

Abstract—Macro-programming advocates the use of high-level
abstractions to specify distributed systems as a whole. However,
macro-programming implementations are often centralised. In
this paper we present PICO-MP, the first fully decentralised
macro-programming middleware for wireless sensor and actuator
network (WSAN) applications. PICO-MP incorporates a novel
publish-subscribe service that can correlate events scattered
across a WSAN using global formulae specifications that are
automatically checked in a distributed fashion. PICO-MP has
been implemented for the TinyOS operating system and validated
on a case study that uses global formulae to improve energy
efficiency (lifetime) of the implementation.

Index Terms—Wireless Sensor and Actuator Networks; Dis-
tributed Computation; Macro-programming; Publish / Subscribe
Paradigm; Energy Efficiency.

I. INTRODUCTION

In order to build dependable WSAN applications, many
aspects need to be addressed including the inherent challenges
of distributed systems. For example, timing, communication
and failure assumptions, security, the constraints of devices
(cpu/memory/bandwidth/battery capacity), as well as the prob-
lems of the physical environment such as radio interference,
bad weather, physical access. Having good software engineer-
ing tools for designing, reasoning, programming, testing/simu-
lating, deploying, evolving and managing WSAN applications
is also crucial.

In this paper we present a new approach for writing WSAN
applications based on macro-programming (like Kairos [5],
SOSNA [8], or [1]).

In our macro-programming system (PICO-MP) we define
the global behaviour of an application using a novel and
expressive first order filtering language that correlates dis-
tributed sensing and actuating events. Global formulae in this
language are checked in a distributed fashion by a network
of brokers. Each broker uses the global formula to calculate
a local sub-formula (called projection) which can be locally
verified.PICO-MP ensures that the distributed checking of
projections produces the same results as the corresponding
global formula. One major advantage of distributed checking
is that it leads to provide opportunities to optimise the energy
efficiency (lifetime) of WSAN applications. To the best of
our knowledge, PICO-MP is the first macro-programming

system for WSANs with a de-centralised implementation and
optimisations for energy efficiency.

The remainder of the paper is structured as follows: Section
II presents the related work. Section III introduces an example
of a smart house system which will be used to describe our
approach. Section IV provides an overview of our middleware.
Section V explains the PICO-MP type-based data model,
and Section VI details the PICO-MP subscription language.
Section VII discusses the projection of a global formula and
its distributed checking by the network of brokers. Section VIII
provides an analytical model which compares the performance
of PICO-MP decentralised checking against a centralised
solution. Finally, Section IX provides conclusions.

II. STATE OF ART

In this section we present some macroprogramming frame-
works and middlewares based on the pub/sub paradigm, and
their main features. As a matter of fact, the high decoupling
between information producers and consumers provided by the
pub/sub paradigm is a key factor in WSAN application devel-
opment, where nodes can be added, removed, or can simply
switch off their radio. Pub/sub systems can be categorised as
topic-based and content/filter-based ([3]).

MQTTs is a topic-based pub/sub that has been proposed
by IBM [12]. This is an adaptation of MQTT, their famous
pub/sub based middleware. MQTTs aims at coping with
issues such as unstable connections, low energy and limited
resources; its main advantage is the aggregation mechanism
for notifications provided in order to save energy at network
gateways. Although it guarantees three levels of quality of
service, it lacks, by nature, in performance and flexibility: the
real computation can only happen into a full MQTT broker,
outside the WSAN, after a translation process from MQTTs.

Another topic-based pub/sub middleware is PS-QUASAR
[2]. This is a lightweight middleware composed of a net-
work maintenance protocol, a simple API, and a routing
protocol. This last component is the most important part in
its functioning: it performs an intelligent multicast message
passing between publishers and subscribers using the informa-
tion provided by the maintenance protocol. This middleware
generates good results in terms of energy consumption, and

it also provides advanced quality of service mechanisms.
Unfortunately, it is limited to topic-based routing.

TinyCOPS [6] is a component-based middleware that sup-
ports both content and topic based pub/sub routing. Its main
feature consists in its vast customisation possibility. This
framework decouples the communication mechanism from
the pub/sub broker functionalities, and it allows the addition
of customised notifications and subscription paths; it also
gives the chance to add service extensions. TinyCOPS uses
a very expressive attribute-based naming scheme, giving a
fine grained control over the pub/sub mechanism. Performance
considerations must be done according to the selected com-
ponents; however, TinyCOPS remains a very general-purpose
middleware which is not so focused on energy efficiency.

PADRES [9] shares some interesting features with our
proposal. PADRES is a distributed pub/sub content based
middleware that has two main innovative features: the first
one is the differentiation between atomic and composite
events. Subscribing to a composite event means that the
overlay network of brokers will only deliver information when
a set of different events are matched together. Then, the
other important feature is the distribution of the subscription
checking task among many brokers in the network, in order
to further decrease useless messaging. However, PADRES
is implemented as a Java middleware which uses RMI and
other powerful full-desktop tools, making it not suitable for
lightweight IoT implementations. MERC [7] proposes an
interesting decoupling technique of event matching and event
routing. Its main goal is the optimisation of throughout and
latency in full desktop environments. The authors in [10], [11]
propose a middleware that automatically distribute global state
machines. These define policies that can correlate data related
to distributed sensors. While the approach can run on small
battery powered sensor nodes the state machine language is
less expressive when compared to the PICO-MP first order
filtering language.

Our main goal is energy efficiency, that is why PICO-
MP introduces a distributed event matching to reduce the
dissemination (and the routing) of events. Subscribers can
also be notified only about the truth value of properties
they request, thus reducing messaging and improving energy
efficiency.

III. CASE STUDY

Monitoring and automatic control of a building environment
([13], [4]) can include the following functionalities: (i) heat-
ing, ventilation, and air conditioning (HVAC) systems; (ii) fire
alarms; (iii) centralised lighting control; and (iv) other systems,
to provide comfort, energy efficiency and security. In order to
demonstrate macro-programming for WSANs we will use a
simplified home-automation case study with 2 applications, a
fire alarm system and a home heating system.

The fire alarm system is composed of temperature sensors,
smoke detectors and sprinkler actuators. When a temperature
sensor reads a value that exceeds a specified threshold (e.g.,

Fig. 1. Example home automation scenario

50C) and a smoke sensor detects smoke, all the sprinklers are
activated.

The automatic heating application is composed of different
temperature sensors and various heaters. We provide the
following automatic heating application:
• if all temperature sensors are greater than the maximum

temperature Tmax (e.g., 24C), the central heating system
turns off.

• if all temperature sensors are less than the minimum
temperature Tmin (e.g., 16C), the central heating system
turns on.

We use the home automation scenario of Figure 1 (which
is mapped onto the PICO-MP deployment network of figure
2). The house is composed of the following four rooms: (i)
the bathroom; (ii) a reception/kitchen; (iii) a bedroom; and
(iv) a corridor. We have deployed one temperature sensor in
each room. Sprinklers and smoke detectors are deployed in the
bedroom and in the kitchen. The base station is in the corridor
and the boiler inside a dedicated room. We assume sensors and
actuators have some memory and processing capabilities (i.e.,
they can locally run some C code).

IV. OVERVIEW

PICO-MP is a type-based pub/sub system [3]. In a type-
based subscription the declaration of a desired type is the main
discriminating attribute by giving a coarse-grained structure on
events (like in topic-based) on which fine-grained constraints
can be expressed over attributes (like in content-based). Type-
based pub/sub in this sense resembles the filtered topic model.

Publishers periodically send information to the PICO-MP
infrastructure in the form of typed events. Subscribers express
their interests in the form of first order logic formulae which
predicate over sets of events. Each set is composed of events of
the same type. Notifications are sent to subscribers whenever
a formula becomes true or false. PICO-MP minimises the
size of the notifications since subscribers only get a true/false
notification; subscribers with particular needs can request,
together with the notification, the set of events that triggered
the notification.

Fig. 2. PICO-MP deployment network of example home automation scenario

PICO-MP brokers are organised in a tree overlay network.
Publishers and subscribers connect to exactly one broker.
Brokers cooperate in order to manage subscriptions, events
and distributed formula checking. Brokers ensure that all
subscriptions flow up till the root node. A broker can prevent a
subscription to reach the root when an equivalent subscription
was already sent. This optimisation process can reduce the
number of subscriptions that flow into the notification service.

The root forwards the global formulae down to the network
of brokers in order to perform their truth check as close as
possible to the event sources (i.e., the publishers). More pre-
cisely, each broker receives the global formula and generates a
local projection of it. This contains parts of the global formula
whose truth can be locally verified at the broker. The projection
generation process assures that if a projection truth does not
change, then the truth of the originating formula does not
change too. When a projection switches its truth value the
broker sends a message to its father, communicating which
parts of the formula changed their truth and how. Eventually,
the root will receive enough information to state that a certain
global formula changed its truth value, and will notify the
subscribers.

V. PICO-MP DATA MODEL

Our projection process requires to assign a type and a
state to events, publishers, predicates and formulae. This is
described in this section.

A PICO-MP event (i.e., a publication) is an instance of
a structure that encapsulates various attributes of a primitive
type. These include numeric (byte, short, int, long, double),
boolean and string types. More precisely, a structure t is a
tuple t = (a1 : type1, . . . , an : typen) where each ai is an
attribute of a primitive type typei. The set T denotes the set
of all possible structures; {t1, . . . , tn} and {T1, . . . , Tn} are
elements in T and the power set P(T). In the rest of the paper
we use structure as synonymous of type. The set E denotes the

set of all possible events; {e1, . . . , en} and {E1, . . . , E2n} are
elements in E and P(E). An event e is an n-tuple e(v1, . . . , vn)
that is an instance of a type t = (a1 : type1, . . . , an : typen)
where each vi is the value of the attribute ai. We can define
a function te : E → T that assigns to each event e its type
t, i.e., te(e) = t. In order to ease the notation we use te
to denote the application of the function to the event e. We
generalise this mapping to sets of events and types. We can
define the function TE : P(E) → P(T) that assigns to a set
of events E = {e1, . . . , ek} the set of types TE(E) = T
with T =

⋃k
i=1 tei . We use the notation TE to denote the

application of the function to the set of events E. The set PUB
denotes the set of all possible publishers; {pub1, . . . , pubn}
and {PUB1, . . . , PUBn} are elements in PUB and P(PUB).
A publisher pub always generates events of the same type t.
We use tpub to denote that pub generates events of the type
t. Let PUB be a set of publishers {pub1, . . . , pubk} we use
TPUB =

⋃k
i=1 tpubi to assign a set of types to the set of

publishers PUB. The function TPUB allows us to relate the
following set of types to a broker b:

• the registration type set TPUBb
where PUBb is a set that

contains all publishers that are directly registered at b. For
the sake of notation, we use Tb to denote TPUBb

;
• the subtree type set Ttree(b) where tree(b) is a set that

contains all publishers in the subtree rooted at b except
the publishers in Tb, i.e. the ones which are directly
connected to b.

In our system, we say that each publisher pub has a
state Spub = e where e is the last event that has been
generated by pub. The set S denotes the state of the system;
{Spub1 , . . . , Spubn} and {S1, . . . , Sn} are elements in S and
P(S). We can define a function St : T → S that assigns to
each type t a state St(t) = {S(tpub1), . . . , S(tpubn)} where
{pub1, . . . , pubn} are all the publishers of the type t in the
system; we denote it with St.

Let PUB be a set of publishers PUB = {pub1, . . . , pubk}
we use SPUB =

⋃k
i=1 Spubk to denote the state of all publish-

ers inside PUB. In the rest of the paper we denote with Sb

the state of the set of publishers which are directly connected
to b, and with Stree(b) the state of the set of publishers which
are connected to some broker in the subtree rooted at b (except
for the publishers which are directly connected to b).

Finally, we define the function filter : P(T) × P(E) →
P(E). Given a set of types T and a set of events E,
filter(T,E) is the subset of E that contains all events of
the type t ∈ T .

For instance, in our home automation case study (see Sec-
tion III for details) we use the structure temperature(value :
int , unit : string) in order to abstract all sensors of
temperature type. The attributes value and unit define the
value and the unit of measurement of a temperature event. The
event e = (24, ”celsius”) can be generated by a sensor pub
detecting a temperature of 24 celsius degree. This is also the
state of the publisher (Spub). Stemperature will be composed
of the event e plus the states of all publishers of the type

1 Prenex_formula := Prefix Matrix
2

3 Prefix :=
4 Prefix QuantifiedVar | QuantifiedVar
5

6 QuantifiedVar :=
7 Quantifier Var ’∈ St’
8

9 Quantifier := ’∀’ | ’∃’
10

11 Matrix := Matrix ’∧’ Predicate | Predicate
12

13 Predicate :=
14 Var’.’Field relop Const
15 | ∆’(’Var’.’Field’)’ ’>=’ Const
16 | PredicateName ’(’TermsList’)’
17 | ’¬’ PredicateName ’(’TermsList’)’
18

19 TermsList :=
20 ’Var’.’Field’
21 | Constant
22 | Constant ’,’ TermsList
23 | ’Var’.’Field’ ’,’ TermsList
24

25 relop := ’<’ | ’>’ | ’==’

Fig. 3. PICO-MP subscription language BNF grammar

temperature.

VI. PICO-MP SUBSCRIPTION LANGUAGE

The PICO-MP subscription language is defined by the
grammar of Figure 3. A subscription is a first order logic
formula in Prenex normal form (line 1 of the grammar of
Figure 3) with no free variables. This is composed of a prefix
part that is followed by a matrix. The prefix is a list of
quantified variables (lines 3 − 4 of the grammar of Figure
3) while the matrix is a conjunction of predicates (line 11 of
the grammar of Figure 3). PICO-MP includes the following
predefined predicates (although the definition of cumstom ones
is supported):
• Var.Field relop Constant: V ar.F ield is an attribute

Field of a quantified variable V ar, relop is a relational
operator (<,>,==) and Constant is a constant value.
This predicate is used to compare the value of an attribute
with a constant value (e.g., x.value > 50);

• ∆(Var.Field) >= Constant : V ar.F ield is an attribute
Field of a quantified variable V ar and Constant is a
constant value. This predicate is true when the variation
of the value of the attribute is greater than or equal to a
constant. This predicate is useful to get notification of a
sensor reading when significant variations take place. A
special case is when the constant is zero. In this case any
variation of the sensor data is sent.

Constants and variable fields can be of the PICO-MP
primitive types that are numeric (byte, short, int, long, double),
boolean and string, while a quantified variable x ranges over
the set St (lines 6− 7 of the grammar of Figure 3). We recall
that St is the state of all the publishers of the type t. In the
rest of the papers we use tfx in order to denote that the variable
x has type t inside the formula f . A formula is checked every
time a new event occurs. When a new subscription occurs, its
formula is supposed to be false. Whenever a formula changes
its truth value its subscribers are notified.

1 publisherTable = {(t1,pub1),. . .,(tn,pubn)}
2

3 brokerTable = {(t1,b1),. . .,(tn,bn)}
4

5 subTable = {(f1,sub1),. . .,(fn,subn)}
6

7 projTable = {(f1,f1∀,f1∃[]),. . .,(fn,fn∀,fn∃[])}

Fig. 4. PICO-MP tables.

PICO-MP distributed checking procedure requires not only
to have typed events but also to associate a type (or a set of
types) to each formula and each predicate call.

A predicate call of a formula f defines a set of types. This
includes the type of each variable that is used in the predicate
call; the total number of different variable types is referred to
as variety:

Definition 1: Let f be a formula q1x1 ∈ St1 , . . . , qmxm ∈
Stm s.t. p1 ∧ . . . ∧ pn where qh ∈ {∀,∃}, xh is a quantified
variable of the type th (with 1 ≤ h ≤ m). p1 . . . pn are
predicate calls in the matrix of f . Suppose that the i-th
predicate call of f is of the form pi(xk.ak, . . . , xq.aq). The
set of types of the predicate call pi in f is defined as

T f
pi

= {tfxk
, . . . , tfxq

}

where xk . . . xq are all the variables in the predicate call pi of
f . The variety vfpi

is equal to |T f
pi
|.

The definition of a predicate call type allows us to assign a
set of types to a formula f . This is defined with Tf =

⋃n
i=1 T

f
pi

where {p1, . . . , pn} are all the predicates in the matrix of f .

VII. PICO-MP DISTRIBUTED NOTIFICATION SERVICE

In this section we discuss in details the flow of information
in our middleware, from publishers to subscribers.

A. Event publication and event type management

Each broker b (note that the root is only considered a partic-
ular case of broker) implements the registration type set Tb and
the subtree type set Ttree(b) by using a publisherTable
and a brokerTable, respectively (see Figure 4). A broker
uses these tables in order to obtain a projection from a global
formula. A publisherTable of a broker b contains a tuple
(t, pub) when a publisher pub of the type t registered at b. A
brokerTable of a broker b contains a tuple (t, b) when
one of its child broker b is the root of a subtree that contains
publishers of the type t.

The publisherTable and brokerTable tables are
kept updated by using the registration, unregistration, adver-
tisement and unadvertisement PICO-MP messages (as shown
in Figures 5 and 6). A publisher pub of the type t, registers
to a broker b by using a registration(t,pub) message.
This registration is used by the publisher pub to declare the
type of events it generates (i.e., t). The broker b receives
the registration and adds (t, pub) to its publisherTable.
Effectively the broker recognises the publisher as its child
and keeps information about its address and the type of
events it generates. When the publisher pub exits the sys-
tem, it must send an unregistration(pub) message

Fig. 5. Messages populating PICO-MP data structures.

to its broker b. This message is received by b that deletes
the entry (t, pub) from its publisherTable. A broker
b can send messages of the type advertisement(t,b)
to its parent broker par(b)1. This uses the advertisements
to keep its brokerTable updated. More precisely, when
par(b) receives the message advertisement(t,b), it
adds the entry (t, b) to its brokerTable. A broker b can
send an unadvertisement(t,b) message to its parent
par(b) when it cannot receive anymore events of the type
t. This happens when all the publishers in tree(b) (of the
type t) unregistered. When par(b) receives the message
unadvertisement(t,b), it removes the entry (t, b) from
its brokerTable.

B. Subscription management

A broker b and a root r use the subTable (see Figure 4) in
order to keep information about subscriptions that originated
in their sub-tree.

The subTable is kept updated by using the sub-
scription and unsubscription PICO-MP messages (as shown
in Figures 5 and 6). A subscriber sub can send a
subscription(f,sub) message to a broker b. When
b receives the message subscription(f,sub) its
subTable (see Figure 4) is updated with the entry (f , sub).
Subscriptions are always propagated till the root (i.e., a broker
always forwards the message subscription(f,sub) to
its parent).

A subscriber sub which is no longer interested in a certain
formula f can send an unsubscription(f,sub) mes-
sage to its parent par(sub). When b receives this message it
removes the entry (f , sub) from its subTable. Unsubscrip-
tions are always propagated till the root (i.e., a broker always
forwards the message unsubscription(f,sub) to its
parent). An optimised version of PICO-MP can use equiva-
lence amongst formulae in order to minimise the subscription
flow. More precisely, a broker does not forward a subscription

1For the sake of presentation we denote with par(pub) = b the broker b
where the publisher pub is directly connected. We denote with par(b) = b1
the broker b1 that is the father of b in the broker notification tree.

Fig. 6. Messages emptying PICO-MP data structures.

formula f1 that is equivalent to a subscription f that was
previously sent. When the broker receives a notification for
the subscription formula f also produces a notification for the
equivalent formula f1.

C. Projection generation process

A root always forwards down to the broker tree each new
subscription f . When a broker b receives the formula f ,
it can perform the projection procedure of Figure 7. This
projection decomposes f into a set of local formulae, i.e.,
a f∀ formula and an array f∃ of formulae. In the rest of the
paper these formulae are referred to as projections. The f∀
projection contains all predicates of f that have all universally
quantified variables (lines 6-9) and have a type set contained
in the type set of the broker b (condition of line 5). This
last condition ensures that the truth of the f∀ projection
can be locally verified by the broker. A f∀ projection has a
f∀ truth, a f∀ children number and a f∀ truth counter
variables. The f∀ truth defines the truth of the f∀ projection.
f∀ children number is the number of broker children which
have a non empty f∀ formula; these brokers are contained
into ∀ childrenSet. The f∀ truth counter is the number
of children which informed b that their f∀ projection is
true. Each element of the f∃ array contains a projection that
has one predicate with all existentially quantified variables
(lines 10-15). Each f∃ truths[i] defines the truth value of the
f∃[i] projection. The f∃ truth counters[i] is the number of
children which informed b that their f∃[i] projection is true.
The projection procedure forwards f to all children brokers
that can generate at least a projection from f (lines 26-28).

D. Distributed event matching

A broker b performs the distributed event matching to check
the truth of projections. This check reduces the number of pubs
that are forwarded towards the root and allows a distributed
computation of each global formula f .

1) f∀ projection checking: A broker b uses the
check truth ∀ procedure of Figure 8 for evaluating
the truth of all universally quantified predicates inside a f∀

1 Projection project(Formula f)
2 Formula f∀ = empty
3 Formula[] f∃ = empty[]
4

5 for each pi ∈ f.matrix, if T f
pi
⊆ Tb

6 if (pi has all universally quantified variables)
7 for each variable xj of pi

8 f∀.prefix.add(∀ xj ∈ tfxj
)

9 f∀.matrix = f∀.matrix ∧ {pi}
10 if (pi has all existentially quantified variables)
11 Formula ∃prj
12 for each variable xj of pi

13 ∃prj.prefix.add(∃ xj ∈ tfxj
)

14 ∃prj.matrix = pi

15 f∃.add(∃prj)
16

17 bool f∀_truth = false
18 int f∀_children_number = |∀_childrenSet|
19 int f∀_truth_counter = 0
20 int[] f∃_truth_counters = 0[]
21 bool[] f∃_truths = false[]
22

23 Projection prj = {f,f∀,f∃}
24 projTable.add(prj)
25

26 for each bi s.t. par(bi) == b

27 if (exist pi in f.matrix s.t. T f
pi
⊆ Tbi

)

28 send(f,projection,bi)
29

30 return prj

Fig. 7. Projection procedure performed by a broker b.

1 State check_truth_∀(Formula f∀)
2 State update = ∅
3 f∀_truth = false
4

5 if (f∀_truth_counter < f∀_children_number)
6 return ∅
7

8 for each predicate pi in f∀.matrix
9 if (vf

pi
== 1)

10 if (!check∀(pi, Sb)) return ∅
11 if (vf

pi
> 1)

12 if (!check∀(pi, Sb ∪ Stree(b)))
13 return ∅
14 else
15 TypeSet T = T f

pi
16 State S = Sb

17 update = update ∪ filter(T, S)
18

19 f∀_truth = true
20 return update

Fig. 8. Check ∀ part of a projection.

projection. This evaluation is performed on all publication
events that can be locally observed at b. This forwards
synchronisation information (i.e., publications) only when all
f∀ predicates are true. In fact, local publications that falsify a
universally quantified predicate of f∀, are sufficient to falsify
the truth of the global formula f . In this case events are
locally blocked. In the following we describe in details the
check truth ∀ procedure:
• the update state contains all events that are forwarded

when the f∀ projection of f is true (line 2)
• The check truth ∀ procedure sets f∀ as false when

there is at least one children broker that has locally
evaluated its f∀ as false (lines 3-6).

• A broker b evaluates all f∀ predicates with variety one
(line 9) by considering the state of its directly connected

1 State check_truth_∃(Formula[] f∃)
2 State update = ∅
3 f∃_truths = false[]
4

5 for each formula fi ∈ f∃
6 predicate pj = fi.matrix
7 if f∃_truth_counters[j]>0
8 f∃_truths[j]=true
9

10 for each formula fi ∈ f∃
11 predicate pj = fi.matrix
12 if (vf

pj
== 1)

13 f∃_truths[i] = f∃_truths[i] ∨ check∃(pj, Sb)
14

15 if (vf
pj

> 1)

16 bool ∃truth = check∃(pj, Sb ∪ Stree(b))
17 f∃_truths[i] = ∃truth ∨ f∃_truths[i]
18 if (f∃_truths[i] 6= old∃truth[i])
19 TypeSet T = T f

pj

20 State S = Sb

21 update = update ∪ filter(T, S)
22 return update

Fig. 9. Check ∃ part of a projection.

publishers (line 10). When at least one of the f∀ predi-
cates is false the f∀ projection is false.

• The truth of f∀ predicates with variety more than one
requires the broker local state and the state of all the
children brokers to be considered (line 16). In fact,
predicates that contain variables of different types must
consider n-tuples that are defined across the state of all
the children brokers. When a f∀ predicate with variety
more than 1 is true the state of its variable type is added
to the state update variable to be returned. This state will
be forwarded to the parent of b.

2) f∃ projection checking: The check truth ∃ procedure
of Figure 9 is quite similar to the check truth ∀ one. Each
pj of an existentially quantified projection inside the array f∃
is considered. When pj is true in one of the children broker
(lines 5-8) the projection is set to true for the local broker
b as well. When pj has variety one the truth is checked by
using the local state of b (line 13) otherwise the state of the
children brokers is used as well (line 116). The ith element
of the array f∃ truths is true when the ith projection of the
array f∃ is true at least in one of the children broker or in the
local broker.

3) Projection checking: Figure 10 shows the check proce-
dure that a broker b performs to evaluate all projections of a
formula f . These projections are created when they are not
in the projection table (lines 3-5). The check procedure first
checks the f∀ projections of f by calling the check truth ∀
procedure that is described in section VII-D1. When the
f∀ projection is evaluated to false the procedure exits and
no publication event is forwarded to the parent broker. A
particular case is when the f∀ projection was previously
true and becomes false. In this case the parent broker of
b is informed by using a ∀ synchronisation message (line
12). Symmetrically, when the f∀ projection was false and
becomes true the parent broker is informed (line 16). The
f∃ projections are also checked when the f∀ projection is
true (line 19). The check procedure also forwards (if the

1 State check(Formula f)
2 State update = ∅
3 Projection prj = projTable.getProjection(f)
4 if prj = null
5 prj = project(f)
6

7 bool previous∀truth = f∀_truth
8 bool[] previous∃truths= f∃_truths
9

10 State update = check_truth_∀(prj.f∀)
11

12 if (f∀_truth == false ∧ previous∀truth == true)
13 send(par(b), ∀, f.id, false)
14 return ∅
15

16 if (f∀_truth == true ∧ previous∀truth == false)
17 send(par(b), ∀, f.id, true)
18

19 update = update ∪ check_truth_∃(prj)
20 for each pi in f∃
21 if(previous∃truths[i] != ∃truths[i])
22 send(par(b), ∃, f.id, pi.id, f∃_truths[i])
23

24 for each predicate p in f
25 if (p has at least a universally and an

existentially quantified variable)
26 TypeSet T = T f

p

27 State S = Sb

28 update = update ∪ filter(T, S)
29

30 return update

Fig. 10. Checking procedure of formulae performed by a broker b.

f∀ projection is true) all publications events that are needed
by the parent broker to check predicates that have at least a
universally and an existentially quantified variable (line 25).
These predicates are not checked at any broker but their truth
is globally checked by the root by using the state forwarded
by all brokers.

4) Parsing of messages: Figure 11 outlines how a broker b
parses messages arriving from other brokers, publishers and
subscribers. This procedures always sends any publication
events produced (if any) at the end (line 34). When a new
formula f is received the broker uses the check procedure to
update its projection table (line 5) and checks the truth value
of f . The local subtree state of a broker can be synchronised
upon the reception of a state synchronisation message (lines
7-10). This requires the checking of some formulae to be
performed. The broker b can also receive updates on the f∀
projections from its children brokers; in this case it updates the
f∀ truth counter (we recall this stores the number of chil-
dren brokers which informed b that their f∀ projection is true).
The parent broker is notified with a ∀ message false (lines 19-
22) when the counter gets lower than f∀ children number.
In fact, the parent needs to be updated when the f∀ projection
is not true in any of the children brokers that are evaluating it.
When an ∃ truth is received (line 29) the f∃ truth counters
array is updated and the check procedure is called.

E. Notification delivery

A root is a particular type of broker that has access to the
entire state of the system. The root receives synchronisation
messages from its children brokers and can calculate the truth
of every global formula f . This is done by procedures that are
similar to the broker ones. Whenever the root detects a change

1 void parse(Message msg)
2 State update=∅
3

4 if (msg == receive(bi, formula, f))
5 update = update ∪ check(f)
6

7 if(msg == receive(bi, state, update))
8 Stree(b) = Stree(b) ∪ update
9 for each f ∈ subTable s.t. Tf ∩ Tupdate != ∅

10 update = update ∪ check(f)
11

12 if(msg == receive(bi, event, e))
13 Sb = Sb ∪ {e}
14 for each f ∈ subTable s.t. Te ∈ Tf

15 update = update ∪ check(f)
16

17 if (msg == receive(bi, ∀, f.id, false))
18 f∀_truth_counter --
19 if (f∀_truth_counter == f∀_truth_number - 1)
20 if (f∀_truth)
21 f∀_truth = false
22 send(par(b), ∀, f.id, false)
23

24 if (msg == receive(bi, ∀, f.id, true))
25 f∀_truth_counter ++
26 if (f∀_children_number == f∀_truth_counter)
27 update = update ∪ check(f)
28

29 if (msg == receive(bi, ∃, f.id, pi.id, truth))
30 if (truth) f∃_truth_counter[i]++
31 else f∃_truth_counter[i]--
32 update = update ∪ check(f)
33

34 if (update != ∅) send(par(b),state,update)
35

36 return

Fig. 11. Parsing of messages at broker b.

in the truth of a subscription formula f , it notifies its subscriber
of it. To do this, each broker (starting with the root itself) uses
its subTable to trace back the subscriber which submitted
the subscription. In this way, a notification(f) message
is sent to the subscriber of f and all equivalent formulae.
At this point, subscribers can react to notifications with a
customised callback procedure, which gives the programmer
the power to define any possible behaviour.

We emphasise that that predicates with variety one are
always computed in a distributed manner, i.e., the root wait
for the truth of their children brokers and evaluate the truth in
its local state. Predicates with variety more than one requires
a state synchronisation from the children brokers in order to
consider tuples which contain events that are observed by
different brokers.

VIII. PICO-MP PERFORMANCE

In this section we discuss the energy efficiency of the PICO-
MP middleware. To this ending we study the traffic gener-
ated inside the distributed notification service. We compare
PICO-MP with an MQTT-like centralised implementation.
The following assumptions are made: (i) WSAN devices and
brokers are arranged in a tree like structure (see Figure 5);
(ii) the centralised implementation can only perform the event
matching at the root of the tree (devices are not enough
performant to run the broker); (iii) PICO-MP brokers run
in all WSANs devices. In our study we do not consider
subscription and notification messages since they flow in the
same way in both centralised and PICO-MP implementation.

It is worth mentioning that PICO-MP can optimise the traffic
generated by subscriptions and notifications. More precisely,
a subscription does not reach the root when an equivalent
one was already sent. Notification traffic can be reduced when
subscribers only require changes in truth value of a formula
and not the entire state.

The total amount of messages that are sent/received by a
broker b (at the time t) can be summarised as follows:

Mb(t) = Mpub(t) + Mreg(t) + Mint(t)

where Mpub(t) and Mreg(t) is the total amount of
publication and registration messages sent/received and
Mint(t) all additional control messages that are sent/received
by the broker.

The centralised implementation has no registration messages
and no additional control messages thus the total amount of
messages can be summarised as M centralised

b (t) = Mpub(t).
The PICO-MP total amount of messages can be calculated

as MPICO
b (t) = M1(t)+M2(F, t)+Mpub(F, t) where M1(t)

are control messages that do not depend on the truth value
of any formula (i.e., projections, registrations and unregistra-
tions of publishers, advertisements and unadvertisements of
brokers), M2(F, t) are messages that are generated when one
or more formulae change their truth value (i.e, ∀ and ∃ control
messages). The Mpub(F, t) term identifies the publications
that have been sent/received at time t (i.e.,the state control
messages). These are sent when the subscribers require the
state that made the formulae truth changing.

We want to study the equation MPICO
b (t) ≤

M centralised
b (t). This can be written as:

M1(t) + M2(F, t) + Mpub(F, t) ≤Mpub(t)

This equation states that PICO-MP performs worse than
a centralised implementation when the formulae are always
true and the subscribers always require the entire state to
be sent. In this case PICO-MP adds to the publication mes-
sages (Mpub(F, t) = Mpub(t)) the extra messages M1(t)
and M2(F, t) for projections/registrations and formula truth
notifications (i.e.,∀ and ∃). PICO-MP performs much better
when subscribers do not require the state (the term Mpub(F, t)
is zero), the formulae do not change their truth often (i.e.,
M2(F, t) is low) and subscriptions are not frequent (i.e.,
M1(t) is low due to reduced control messages). For instance
this is the case of home and building automation where
subscriptions are usually related to actuators. Actuators are
not added/removed frequently and an actuator policy is rarely
changed.

IX. CONCLUSIONS

In this paper we present PICO-MP, a fully decentralised
macro-programming middleware for WSANs. An expressive
language that is based on first order logic is used to specify
a global behaviour. This can correlate distributed sensing and
actuating events. A broker can locally create a projection of a
global formula. PICO-MP ensures that the distributed checking

of all projections of all brokers produces the same results
of their global formula checking. The use of PICO-MP can
improve the WSAN life time when publishers plays a very
dynamic role with a lot of activity, while subscribers do not
change their subscriptions very often.

REFERENCES

[1] J. Cecı́lio and P. Furtado. A state-machine model for reliability eliciting
over wireless sensor and actuator networks. In Proceedings of the
3rd International Conference on Ambient Systems, Networks and Tech-
nologies (ANT 2012), the 9th International Conference on Mobile Web
Information Systems (MobiWIS-2012), Niagara Falls, Ontario, Canada,
August 27-29, 2012, pages 422–431, 2012.

[2] J. Chen, M. Dı́az, B. Rubio, and J. M. Troya. PS-QUASAR: A
publish/subscribe qos aware middleware for wireless sensor and actor
networks. Journal of Systems and Software, 86(6):1650–1662, 2013.

[3] P. T. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. The many
faces of publish/subscribe. ACM Comput. Surv., 35(2):114–131, 2003.

[4] K. Gill, S.-H. Yang, F. Yao, and X. Lu. A zigbee-based home automation
system. Consumer Electronics, IEEE Transactions on, 55(2):422 –430,
may 2009.

[5] R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming
wireless sensor networks using Kairos. In Distributed Computing in
Sensor Systems, First IEEE International Conference, DCOSS 2005,
Marina del Rey, CA, USA, June 30 - July 1, 2005, Proceedings, pages
126–140, 2005.

[6] J. hinrich Hauer, H. Vlado, A. Köpke, A. Willig, and A. Wolisz. A
component framework for content-based publish/subscribe in sensor
networks. February 2008.

[7] S. Ji, C. Ye, J. Wei, and H.-A. Jacobsen. Merc: Match at edge
and route intra–cluster for content-based publish/subscribe systems. In
Proceedings of the 16th Annual Middleware Conference, Middleware
’15, pages 13–24, New York, NY, USA, 2015. ACM.

[8] M. Karpinski and V. Cahill. Stream-based macro-programming of wire-
less sensor, actuator network applications with SOSNA. In Proceedings
of the 5th Workshop on Data Management for Sensor Networks, in
conjunction with VLDB, DMSN 2008, Auckland, New Zealand, August
24, 2008, pages 49–55, 2008.

[9] G. Li and H. Jacobsen. Composite subscriptions in content-based
publish/subscribe systems. In Middleware 2005, ACM/IFIP/USENIX,
6th International Middleware Conference, Grenoble, France, November
28 - December 2, 2005, Proceedings, pages 249–269, 2005.

[10] L. Mostarda and A. Navarra. Distributed intrusion detection systems for
enhancing security in mobile wireless sensor networks. IJDSN, 4(2):83–
109, 2008.

[11] G. Russello, L. Mostarda, and N. Dulay. ESCAPE: A component-based
policy framework for sense and react applications. In Component-
Based Software Engineering, 11th International Symposium, CBSE
2008, Karlsruhe, Germany, October 14-17, 2008. Proceedings, pages
212–229, 2008.

[12] A. Stanford-Clark and H. L. Truong. Mqtt for sensor networks (mqtts)
specifications. October 2007.

[13] C. Vannucchi, M. Diamanti, G. Mazzante, D. R. Cacciagrano, F. Cor-
radini, R. Culmone, N. Gorogiannis, L. Mostarda, and F. Raimondi.
virony: A tool for analysis and verification of ECA rules in intelligent
environments. In 2017 International Conference on Intelligent Environ-
ments, IE 2017, Seoul, Korea (South), August 21-25, 2017, pages 92–99,
2017.

