The Journal of Systems and Software 81 (2008) 2210-2236

journal homepage: www.elsevier.com/locate/jss

Contents lists available at ScienceDirect

The Journal of Systems and Software

iy

Synthesis of decentralized and concurrent adaptors for correctly assembling

distributed component-based systems ™

Marco Autili?, Leonardo Mostarda €, Alfredo Navarra®, Massimo Tivoli **

2 Dipartimento di Informatica, Universita dell’Aquila, Via Coppito, I-67100 L'Aquila, Italy

b Dipartimento di Matematica e Informatica, Universita degli Studi di Perugia, Via Vanvitelli 1, I-06123 Perugia, Italy
¢ Department of Computing, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom

ARTICLE INFO ABSTRACT

Article history:

Received 14 February 2007

Received in revised form 1 April 2008
Accepted 4 April 2008

Available online 12 April 2008

Keywords:

Software architecture
Component-based software engineering
Component assembly

Component adaptation interactions.

Building a distributed system from third-party components introduces a set of problems, mainly related
to compatibility and communication. Our existing approach to solve such problems is to build a central-
ized adaptor which restricts the system’s behavior to exhibit only deadlock-free and desired interactions.
However, in a distributed environment such an approach is not always suitable. In this paper, we show
how to automatically generate a distributed adaptor for a set of black-box components. First, by taking
into account a specification of the interaction behavior of each component, we synthesize a behavioral
model for a centralized glue adaptor. Second, from the synthesized adaptor model and a specification
of the desired behavior that must be enforced, we generate one local adaptor for each component. The
local adaptors cooperatively behave as the centralized one restricted with respect to the specified desired

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Reuse-based software engineering is becoming one of the main
development approaches for business and commercial systems.
Nowadays, a growing number of software systems are built as a
composition of reusable or COTS (Commercial-Off-The-Shelf) com-
ponents and CBSE is a reuse-based approach which addresses the
development of such systems.

In an ideal world, component-based systems are assembled by
simply connecting together compatible ready-to-use components,’
that jointly provide the desired functionalities. However, in the prac-
tice of software development it turns out that the constituent com-
ponents often do not perfectly fit together and adaptation is needed
to eliminate the resulting mismatches (Becker et al., 2006; Yakimo-
vich et al., 1999; Szyperski, 2004; Horwich, 1990; Yellin and Strom,
1997, 2002; Zaremski and Wing, 1995; Schmidt and Reussner, 2002;
Becker et al., 2004). In particular, considering third-party and black-
box components makes the problem worse since there is no way to
inspect the source code for possibly solving mismatches from inside.
In this setting, while assembling a distributed system from a set of

* This paper is a revised and extended version of Autili et al. (2006) that has been
presented at EWSA2006.
* Corresponding author.
E-mail addresses: marco.autili@di.univaq.it (M. Autili), Imostard@doc.ic.ac.uk (L.
Mostarda), navarra@dipmat.unipg.it (A. Navarra), tivoli@di.univagq.it (M. Tivoli).
! Hereafter the terms component and component instance are used interchangeably.

0164-1212/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2008.04.006

black-box components interacting by message passing, the specific
problem we want to face concerns how to automatically prevent
deadlocking and undesired (externally observable) interactions of
the resulting system. A widely used technique to deal with this prob-
lem is to use adaptors and interpose them among the components
that are being assembled to form the system. The intent of the
adaptors is to moderate the external communication of the compo-
nents in a way that the resulting system is deadlock-free and com-
plies with a desired behavior (i.e., desired sequences of messages
exchanged among the components).

Our previous approach (Inverardi and Tivoli, 2003) (imple-
mented in the previous version of our SyntHEsis tool (Tivoli and
Autili, 2006)) is to build a centralized adaptor which restricts the
system’s behavior to exhibit only a set of deadlock-free or desired
interactions. By exploiting an abstract and partial specification of
the global behavior that must be enforced, SyntHEsis automatically
builds such an adaptor. It mediates the interaction among the com-
ponents by allowing only the desired behavior specified by the
assembler (i.e., the SyntHEsis user) and, simultaneously, avoiding
possible deadlocks.

In a distributed environment it is not always possible or conve-
nient to introduce a centralized adaptor. For example, existing dis-
tributed systems might not allow the introduction of an additional
component (i.e., the adaptor) which coordinates the information
flow in a centralized way. Moreover, the coordination of several
components might cause loss of information and bottlenecks,

mailto:marco.autili@di.univaq.it
mailto:lmostard@doc.ic.ac.uk
mailto:navarra@dipmat.unipg.it
mailto:tivoli@di.univaq.it
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236 2211

hence slowing down the response time of the centralized adaptor.
Conversely, building a distributed adaptor might extend the appli-
cability of the approach to large-scale contexts.

In this paper, we describe our novel approach to the automatic
generation of a distributed adaptor for a set of black-box compo-
nents. Given (i) a Labeled Transition System (LTS) (Keller, 1976)
specification of the interaction behavior (based on message pass-
ing?) of each component with its “expected environment™ and (ii)
an LTS-based specification of the desired behavior that the system
to be composed must exhibit, our approach generates component lo-
cal adaptors (one for each component). These local adaptors suitably
communicate in order to avoid possible deadlocks and to enforce the
specified desired interaction behavior. They constitute the distrib-
uted adaptor for the given set of black-box components.

In Tivoli and Autili (2006) (and references therein), we have
shown how it is possible to automatically derive LTS behavioral
descriptions by assuming a partial specification of the system to
be assembled. In particular, we give a partial specification of the
interaction behavior of each component in the form of a basic Mes-
sage Sequence Chart (bMSC) and high-level MSC (hMSC) specification
(Uchitel etal.,2004; ITU Telecommunication Standardisation Sector,
1996). By applying our implementation of the algorithm described
in Uchitel et al. (2004), the partial specification of each component
is automatically translated into the corresponding LTS specification.
hMSC and bMSC specifications are useful as an input language, since
they are commonly used in software development practice. Thus,
LTSs can be regarded as an internal specification language.

Starting from the specification of the components’ interaction
behavior, our approach synthesizes a behavioral model (i.e., an
LTS) of a centralized glue adaptor. At this stage, the adaptor LTS is
built only for modeling, by interleaving, all the possible (externally
observable) interactions considering synchronization on common
actions, i.e., the send event for a message and the corresponding re-
ceive event. It models a dummy routing component and each mes-
sage it receives is forwarded strictly to the right component.

By taking into account the specification of the desired behavior
that the composed system must exhibit, our approach explores the
centralized glue adaptor model in order to find those states leading
to deadlocks or to undesired behaviors. This process is used to
automatically derive the actual code for the set of local adaptors
that implement the correct* and distributed version of the central-
ized adaptor model. It is worth mentioning that the construction
of the centralized glue adaptor model is required to deal with dead-
locks in a fully-automatic way. Otherwise, in order to avoid the con-
struction of the centralized adaptor, we should make the stronger
assumption that the specification of the desired behavior itself en-
sures deadlock-freeness and it is consistent with respect to the cen-
tralized glue adaptor (i.e.,, the desired behavior can be enforced
against the glue adaptor).

The approach presented in this paper has various advantages
with respect to the one described in Tivoli and Autili (2006) and
Inverardi and Tivoli (2003) concerning the synthesis of centralized
adaptors. The most relevant ones are

¢ no centralized point of information flow exists;

e the degree of parallelism of the system without the adaptor is
maintained. Conversely, the approach in Tivoli and Autili
(2006) does not permit parallelism since the adaptor is central-
ized, single-threaded and the communication with it is
synchronous;

2 Message exchanging can be used for delivering packages of data or for calling
remote procedures.

3 Dealing with third-party and ready-to-use components, the expected environ-
ment is actualized at assembly time by the set of all the other components that are
being assembled to form the system.

4 With respect to deadlock-freeness and the specified desired behavior.

¢ all the domain-specific deployment constraints imposed on the
adaptor can be removed. In Tivoli and Autili (2006), we applied
the synthesis of centralized adaptors to COM/DCOM applica-
tions. In this domain, the centralized adaptor and the server
components had to be deployed on the same machine. Now,
the approach described in this paper allows one to deploy each
component (together with its local adaptor) on different
machines.

The SyntHEsis tool has been extended accordingly in order to
enable also the distributed implementation of the generated
adaptor model. The distributed adaptor is implemented as a set
of EJB component wrappers (Autili et al., 2007). Each wrapper is
developed by using Aspect] that easily supports the wrapper tasks
of intercepting the component messages and correctly coordinat-
ing them. Note that Aspect] is only one possible implementation
choice.

2. Background notions

This section provides the reader with background concepts, def-
initions and assumptions needed for a full understanding of our
work. Actually, the discussion has been kept as light as possible
in order to give a good intuition to the reader without loosing
his/her attention. Detailed formalisms and definitions are then re-
ferred to Appendixes A and B.

In our context, a distributed system is a network of interacting
black-box and ready-to-use components C={Cj, ..., C,;} that can
be simultaneously executed. Components communicate by mes-
sage passing. Messages are exchanged by means of communication
channels, performing precise communication protocols that spec-
ify (in some formalism) the set of all possible message sequences.
Note that, dealing with black-box components, communication
protocols specify external communication among components by
the relatively simple nature of the message exchange (and hence
by means of send and receive events) rather than internal compu-
tation within a component. Generally speaking, communication
channels can be

e asynchronous - no synchronization points exist and message
passing never blocks the sender. This implies a potentially
unbounded buffer; in practice, a bounded buffer is used and
the sender will block when the buffer is full. In this way, a higher
degree of parallelism can be achieved because (possibly) the
sender never has to wait.

e synchronous - message passing uses no buffer and, due to syn-
chronization points, both senders and receivers can block. The
term rendezvous is often used to evoke the image of two pro-
cesses that have to meet at a specific synchronization point.

For the purposes of this work, we model component interaction
by assuming that the components to be assembled communicate
by means of synchronous communication channels. This is not a
limitation since, in practice, by introducing a finite buffer compo-
nent to decouple message passing, we can simulate a bounded
asynchronous system with a synchronous one (Uchitel et al.,
2004; Milner, 1989). Obviously, in this case, there is the necessity
of explicitly programming the needed buffers by exploiting the na-
tive primitives (of the programming language being used) that are
provided to support the synchronous communication. It is well
known that reasoning (e.g., deadlock prevention) with the presence
of unbounded buffers is undecidable (Brand and Zafiropulo, 1983).
From a practical point of view, this motivates the reasonable
restriction to consider only synchronous systems (or, possibly,
bounded asynchronous ones).

2212 M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236

In this work, we also consider both stateful and stateless compo-
nents characterized as follows:

e stateful - The internal state of a component instance consists of
the values of its instance variables. In a stateful component, the
instance variables represent the internal state of a unique
component-client session. Because the client interacts (“talks”)
with its component instance, this state is often called the
conversational state since it is retained for the duration of the
component-client session. If the client removes the component
instance from the memory or terminates, the session ends and
the state disappears. This transient nature of the state is not a
problem, however, because when the conversation between
the client and the component ends there is no need to retain
the state.

o stateless — A stateless component does not maintain a conversa-
tional state for the client. When a client invokes the method of a
stateless component, the component instance variables may
contain an internal state, but only for the duration of the invoca-
tion. When the method is finished, the internal state is no longer
retained.

Recalling that we promote the use of additional components,
called local adaptors (hereafter also referred as wrappers), to be
interposed among the system components for mediating their
interaction, we distinguish between (i) standard and (ii) additional
(external) communication. The former denotes the messages that
system components can exchange for data package delivering or
for remote procedure call; the latter denotes the additional mes-
sages that the local wrappers exchange in order to coordinate each
other. In fact, due to synchronous communication, by letting the
components interact in an uncontrolled way (i.e., without adapt-
ors), they might perform deadlocking or undesired interactions.
To overcome this problem, local wrappers (through a wrapping
and forwarding mechanism) will intercept the components’ stan-
dard communication and mediate it by exchanging additional
communication, when needed.

3. Problem description

The problem we want to treat can be phrased as follows:
Given a set of interacting black-box components C and a desired
behavior P, automatically derive (when possible) a deadlock-free
and distributed adaptor A that, after we assemble the components in
G, conforms to P.

The basic ingredients of this problem are: (i) the nature of the
components we are considering, (ii) the type of desired behavior
we want to check, and (iii) the type of systems we want to build.
We consider truly black-box components and, hence, the source
code of the component is not available. For now, a desired behavior
Pis a functional property expressing precise ways to coordinate the
interaction behavior of the components that are being assembled
to form the system. The architecture of the system, assembled by
means of the distributed adaptor A, is constrained by the architec-
tural style we consider. It defines the rules used to build the com-
posed system and it is called DABA (i.e., Distributed Adaptor-Based
Architecture) style (defined in Section 3.1).

Besides assuming that the system architecture must reflect the
rules of the DABA style, we also assume that a behavioral specifica-
tion of each component is provided in the form of an LTS. Thus,
when we say: Given a set of interacting black-box components C ...
in the problem definition we mean that we consider a set of com-
ponent behavioral specifications C (i.e., a set of LTSs) that describe
the standard (external) communication protocol. As already said in
Section 1 it is possible to automatically derive these LTS descrip-

tions by assuming a MSC-based specification of the components
to be assembled. LTSs give a trace-based semantics of the interac-
tion behaviour of the components with the external environment
(see Appendixes A.1 and A.2). Informally, a transition of an LTS is
labeled with a component message (send or receive) and a state
of the LTS models a “logical” state of the component. This logical
state represents a certain point of the component interaction in
which the component has exchanged a message (i.e., one of the
messages labeling the incoming transitions) and is ready to ex-
change some other messages (the ones labeling the outgoing tran-
sitions). Note that, in this sense, the state of an LTS does not model
the internal actual state of the component, i.e., values of its in-
stance variables.

Informally, our approach is the following. The method starts
with a set of components, and builds a centralized glue adaptor fol-
lowing the reference style constraints. The glue adaptor models all
possible component interactions and each received message is for-
warded to the right component directly, hence serving as a dummy
router” for the component interaction. Then deadlock-freeness and
desired behavior analysis is performed. If the synthesized glue adap-
tor contains deadlocking and desired behavior violating interactions,
a prevention strategy is applied. Depending on the specified desired
behavior, the analysis of only the centralized adaptor is enough to
automatically distribute it in a set of component wrappers (each of
them local to each component), hence enforcing the only system
interactions that are deadlock-free and do not violate the desired
behavior.

Note that, in a first phase, our approach restricts the set of all
possible composed system behaviors in order to keep only those
component interactions that are deadlock-free. In doing so, it can-
not be sure that those component interactions that are actually
needed for the overall purpose of the system are still kept. The de-
sired behavior analysis takes care of performing this check. That is,
the desired behavior is an LTS specifying the only standard com-
munication that all the interacting components should perform
to realize the purposes of the resulting system. The desired behav-
ior enforcing mechanism further restricts the behavior of the dead-
lock-free composed system in order to avoid the component
interactions that violate the specified desired behavior (and, hence,
those component interactions that are not required for the overall
purpose of the system). It might be the case that, by taking into ac-
count the set of components given as input to our method, it is not
possible to assemble a distributed and deadlock-free system that,
in the same time, satisfies also the specified desired behavior. This
can be due to the fact that the specified desired behavior contains
interactions that either do not belong to all the possible compo-
nent interactions or have been prevented by the deadlock analysis.
Within our method, this condition is checked by means of a trace
containment check (Milner, 1989) between the desired behavior
LTS and the adaptor LTS where the deadlocking interactions have
been removed (see also Section 5.1). In the case the check answers
that all the traces of the desired behavior LTS are not contained in
the deadlock-free traces of the adaptor LTS, since we are dealing
with black-box components, there is nothing to do and our method
answers to the user with an unsuccessful output. Otherwise, our
method will synthesize a deadlock-free and distributed adaptor
that permits only the component interactions specified through
the desired behavior and that are the ones required for the pur-
poses of the system (we recall that the adaptor is implemented
as a set of component wrappers). In fact, the correct adaptor (with
respect to the deadlock-freeness and the specified desired behav-
ior) has not to necessarily let the components perform all their

5 A router that does not apply any particular routing logic except for the simple
reception/forwarding of component messages.

M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236 2213

possible interactions but only the ones that are needed for the sys-
tem'’s purposes.

Indeed, one cannot assume that the actual code of a (black-box)
component has been developed in a way that it is always possible
to disable/discard a component action by the external environ-
ment. Actually it can be done only if the developer had preemp-
tively foreseen it and, for instance, an exception handling logic
was aptly coded for such an action. Thus we would need to distin-
guish between controllable and uncontrollable actions. In other
words, we should distinguish between component actions that
can be discarded by the external environment (e.g., the adaptor)
and component actions that cannot be discarded. For example, in-
puts coming from a sensor are often considered as uncontrollable
since they must be accepted and treated by the component. In con-
trast, controllable actions can be safely discarded, for instance to
correctly prevent a deadlock. As it is usually done in the discrete
controller synthesis research area (Ramadge and Wonham, 1987;
Brandin and Wonham, 1994), the developer is in charge of specify-
ing which component actions are controllable and which are
uncontrollable. Therefore, for the purposes of our method, we
should assume that the component developer specifies this kind
of information, e.g., by tagging, within a component’s LTS, action la-
bels as controllable or uncontrollable. In previous work from some
of the authors (Tivoli et al., 2007), we applied this approach to the
automatic synthesis of centralized adaptors for real-time compo-
nents. Since in this paper, we mainly focus on the automatic distri-
bution of the centralized adaptor (and this is the novel
contribution with respect to our previous work), for the sake of
simplicity, we avoid to address controllability issues and we as-
sume that all component actions are controllable. This is not a lim-
itation of the work presented in this paper since, as briefly
discussed in Section 5.1, its extension to account for controllability
issues is straightforward.

3.1. The reference architectural style

In this section, we define the reference architectural style that
represents the starting point of our work. This style imposes con-
straints on the architecture of the system to be assembled that al-
low us to automatically derive, from a set of component behavior
specifications, a behavioral model of the centralized adaptor. As
we will see in Section 4, this model plays a key role in synthesizing
the deadlock-free and distributed adaptor in a way that it does not
violate the specified desired behavior.

Within this architectural style, we consider three kinds of sys-
tem configurations concerning with the use of: (i) no adaptor, (ii)
a centralized adaptor, or (iii) a distributed adaptor. As already said,
the aim of our approach is to automatically derive, from a set of
black-box components (communicating by exchanging messages),
the code that implements new additional components to be in-
serted in the composed system. These new components implement
wrappers. A wrapper mediates the interaction between the super-
vised component and the other ones in order to prevent possible
deadlocks and/or undesired behaviors. To this aim, we distinguish
two kinds of components: functional components and adaptors.
Functional components implement the system’s functionality,
and are the primary computational constituents of a system
(black-box components typically implemented by third-parties).
They perform only standard communication. Adaptors, on the
other hand, simply route messages and each message they receive
is forwarded strictly to the right component. They intercept the
standard communication and mediate it by exchanging additional
communication (see Section 2). We make this distinction in order
to clearly separate components that are responsible for the func-
tional behavior of a system and additional components that are
introduced to aid the integration/communication behavior.

Hereafter, we will refer to a system as an Adaptor Free Architec-
ture (AFA) if it is defined without any adaptor; a system in which a
centralized adaptor appears is termed Centralized Adaptor-Based
Architecture (CABA); conversely, a system in which a distributed
adaptor appears as a set of local wrappers (one for each functional
component) is termed Distributed Adaptor-Based Architecture
(DABA). The respective definitions follow:

Definition 1 (AFA). An Adaptor Free Architecture (AFA) is a set of
components directly connected, through connectors, in a synchro-
nous way.

Definition 2 (CABA). A Centralized Adaptor-Based Architecture
(CABA) is a set of components directly connected to one central-
ized adaptor, through connectors, in a synchronous way.

Definition 3 (DABA). A Distributed Adaptor-Based Architecture
(DABA) is a set of components each of them directly connected
to its component wrapper, through connectors, in a synchronous
way. Each wrapper is connected to all other wrappers, through
connectors, in an asynchronous way.

Fig. 1a illustrates an AFA, Fig. 1b and c its corresponding CABA
and DABA, respectively. C1, C2, C3 and (4 are instances of func-
tional components. A is a centralized adaptor. w1, w2, w3 and w4
are local wrappers (forming the distributed version of A). The com-
munication channels denoted as lines between components are
connectors (e.g., ORB for CORBA, RPC for COM+ and RMI for EJB).

Since we are considering a synchronous communication among
functional components, the send event for a message and the cor-
responding receive event, that synchronize two components, are
considered to be blocking events.

Thus, the behavior of a component is specified as an LTS and, as
defined in Appendix A.3, the system configuration is specified by
using the LTS parallel composition operator. Send and receive
events of a component are also referred as output and input actions
of the component LTS, respectively. To define the behavior of a
composition of components, we simply place in parallel the LTS
descriptions of those components. The parallel composition opera-
tor combines the behaviors of LTSs by synchronizing their shared/
common actions and interleaving their non-shared ones. In this way,
we force the components (in the parallel composition) to synchro-
nize only on “complementary” common actions. In other words, if
a component G, in the parallel composition, sends a message m
then its only way to progress is to synchronize with some compo-
nent G; (i # j), which receives m. This gives an AFA for a set of com-
ponents (see Appendix A.4).

Given an AFA for a set of components, we can also produce a
corresponding CABA for these components by automatically deriv-
ing and interposing a centralized glue adaptor among communi-
cating components. The adaptor at this point simply routes
messages (see Appendix A.5). Informally, the trace-based semantic
of the CABA-system behavior is achieved through the parallel
composition operator applied to the set of component LTSs and
the adaptor LTS. In Inverardi and Tivoli (2003), the correctness of
this derivation step of the synthesis approach is proved by showing
that the AFA-system can be simulated by the synthesized

wil w2

Fig. 1. A sample of (a) an AFA, (b) a CABA, and (c) a DABA.

2214 M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236

CABA-system under a suitable notion of “state based” equivalence
called CB-Simulation. The starting point of CB-Simulation is the
stuttering equivalence (Nicola and Vaandrager, 1995). In Inverardi
and Tivoli (2003), the completeness of the synthesis approach is
also proved by showing that the centralized glue adaptor does
not introduce in the system any new logic. As we will see later,
the centralized glue adaptor will play a key role in synthesizing
the set of component wrappers that implement the distributed
adaptor. It restricts, under controllability (see Section 3), the sys-
tem interactions to a subset of deadlock-free and (specified) de-
sired interactions.

In the reminder of this section, we introduce the deadlock prob-
lem in a component-based setting and the desired behavior speci-
fication notation.

3.2. Deadlock and desired behavior modeling

In our context, the deadlock is the base failure because it is di-
rectly identifiable in the behavioral model of the synthesized glue
adaptor. That is, we distinguish the prevention of deadlocks and of
undesired behaviors. However, as already said in Sections 1 and 2,
we provide the user with the option of specifying deadlock-freeness
directly with the desired behavior specification, hence avoiding the
synthesis of the glue adaptor model. In spite of this, we maintain a
special handling of deadlock-freeness because we do not want to
force the user to provide such a specification. This is a reasonable
choice since, for large systems, deadlocks are very often unpredict-
able and, hence, automating the process for their detection and pre-
vention is required in order not to involve the user in the process.

We give the following definition to describe the deadlock prob-
lem in a component-based context.

Definition 4 (Deadlock). A set C of components is deadlocked if
each component in C is waiting for an event that only a different
component in C can cause.

Informally we can say that in component-based architectures,
there are two types of deadlock problems:

e observable deadlocks;
o hidden deadlocks.

For both kinds of deadlocks, the behavior of a component is
wrong with respect to the behavior of its actual environment
(i.e., the assembly made by all other components in the system)
although the component behavior might be correct with respect
to the “stand-alone” context represented by the invariants as-
sumed at development time. Specifically, both kinds of deadlocks
occur during the interaction between a component and its environ-
ment. For the first kind of deadlock, the failure is an event that is
observable by the component environment. For the second kind,
the failure is an externally non-observable event since it might de-
pend on internal characteristics of the component.

Thus, observable deadlocks can be treated in the component
setting by operating on the architectural context — namely on the
glue adaptor; the hidden deadlocks cannot be automatically ad-
dressed. The only way to solve hidden deadlocks is to modify the
internal behavior of a component but this is not possible when
dealing with black-box components. An example of a hidden dead-
lock type is offered by the Compressing Proxy problem (Compare
et al,, 1999). Thus, we focus only on the first class of problems,
attempting to create adaptors that can prevent observable dead-
locks. In the remainder of this paper, we use the term deadlock
to mean an observable deadlock.

Note that observable deadlocks can occur not only when deal-
ing with stateful components but also with stateless ones (see Sec-

tion 2). For instance, consider a client that invokes the method m of
a stateless component C1. Although the component-client session
is kept only for the duration of m, from within m, C1 can in turn in-
voke a method of another component C2. The interaction between
C1 and C2 might deadlock, hence blocking the client as well.

By referring to Section 3.1, in our setting, a deadlock in the AFA-
system (i.e., the component LTSs parallel composition) is directly
identifiable as a sink state (i.e., a deadlock state - see Appendix
A.6) of the centralized glue adaptor LTS in the corresponding
CABA-system (i.e., the parallel composition of the component LTSs
plus the adaptor LTS).

As already mentioned, our approach also tackles the analysis of
failures beyond deadlock by exploiting a specification of the inter-
actions that are needed for the overall purpose of the system. As
previously done, we refer to such a set of needed interactions as
the desired behavior since it represents, among all possible interac-
tions of the AFA-system, the ones that we wish the resulting DABA-
system will satisfy exclusively.

We recall that a desired behavior is specified in terms of an LTS.
In particular, for the purposes of our method, this LTS has an en-
riched syntax for the action labels expressive enough to model a:

e regular action, i.e., one specific component action;

e negative action, i.e., all possible actions (of all the components)
but one;

e universal action, i.e., all possible actions (of all the components);

e logical “AND” of negative actions, i.e., all possible actions but the
ones within the “AND” operator;

e logical “OR” of regular actions, i.e., at least one action among the
ones within the “OR” operator.

By exploiting this enriched syntax, the desired behavior LTS al-
lows the user of SYNTHESIS to abstract from irrelevant details and
easily specify an high-level model of the behavioral requirements
of the resulting DABA-system that is being assembled. In Appendix
A.7, we formally define the enriched LTS syntax, and in Section 4
we discuss a simple explanatory example for introducing the kind
of problem that our method aims at preventing and for showing
how the above syntax is used for specifying a desired behavior
LTS. Obviously, the user can specify a desired behavior that is al-
ways violated by the composed system. In this case, our tool will
answer to the user that this behavior cannot be satisfied and, prob-
ably, something in the specification has to be changed.

4. Explanatory example

In Fig. 2, we show the component LTSs of the AFA-system for
our explanatory example. The system is composed by three com-
ponents: a server C1, and two clients C2 and C3.

For the transition labels, we denote with, e.g., 2C1.a (resp., !
Cl.a) the receive (resp., send) message C1.a. The state with the
incoming arrow is the initial logical state (i.e., the state SO in each
component LTS). Referring to Section 3, we recall that a logical
state does not model the internal state of a component in terms
of values of its instance variables, but it models a certain point of
the component external interaction in which the component is
ready to receive/send certain specified messages. For instance,
from the state SO, the component C1 is ready to receive the re-
quests Cl.a and Cl.c (ie, ?Cl.a and ?Cl.c, respectively), and,
from the state s1, it is ready to send the notifications c1.b (!
C1.b).

We recall that we model the system behavior by composing in
parallel the component LTSs (see Appendixes A.3 and A.4) and forc-
ing synchronization on common send/receive messages. For exam-
ple, ¢2 can synchronize with C1 on messages C1.a and C1.b.

M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236

2215

c2

C3

Fig. 2. LTSs of the components forming the AFA-system.

Indeed, since we want to deal with either reusable black-box
components or COTS components, there might not be a direct syn-
tactical correspondence between the action labels used by the dif-
ferent component LTSs. In general, this kind of mismatch cannot be
solved automatically and it requires to develop (by hand) compo-
nent wrappers solving that syntactical mismatch, as done in the
work described in Tivoli and Autili (2006) and Autili et al. (2004).
Since in this work we are focusing on automatically preventing
interaction protocol mismatches, we consider this problem out of
the scope of this paper and, hereafter, we will assume that the
component interfaces syntactically match, either because they al-
ready match or because suitable component wrappers have been
previously developed by the system assembler (i.e., a possible user
of the SYNTHESIS tool).

Proceeding with the description explanatory example, in the
AFA-system a deadlock occurs whenever C2 sends the message
C1.a after that ¢3 has previously sent the message C1.c. Actually,
in this case, C1 reaches the state s3 in which it would send c1.4
but there is no other component ready to receive it, hence blocking
the execution of c1. On the other hand, c2 is waiting to receive
C1.b in the state s1 and C3 is waiting to send C1.a in the state
51 but there is no other component either sending C1.b or receiv-
ing C1.a, hence blocking the execution of ¢2 and ¢3. Thus, the glo-
bal state (83,81, 81) of the AFA-system is a deadlock state (note
that, 83, 81, s1 are local states of c1, ¢2 and C3, respectively).

In Fig. 3, we show the LTS of the centralized glue adaptor for c1,
c2, and ¢3. Unlike action labels in a component LTS, each label car-
ries a post-fixed identifier specifying which component performs
that action. For instance, ?C1.a_2 models the action ?C1l.a per-
formed by the component c2.

The centralized glue adaptor is synthesized to model (by inter-
leaving) all the components’ interaction in the AFA-system. It mod-
els a simple routing component and each message it receives is
forwarded strictly to the right component. For instance, looking
at the trace from the state SO to the state s2 shown in Fig. 3, in
the CABA-system, the adaptor synchronizes with ¢2 by receiving
the message C1.a (i.e., the action label ?2C1.a_2), and then synchro-
nizes with ¢1 by forwarding c1.a (li.e., C1.a_1). The state S1 mod-
els an “intermediary” logical state of the glue adaptor while the
latter is forwarding the message C1.a. This means that the adaptor

IC1.a_1

performs strictly sequential I/0 behavior (see Definition 13 in
Appendix A.5).

In Fig. 3, the deadlock has been detected as the filled sink state
S7 (of the glue adaptor) that encodes the global state (s3, 51, S1)
of the AFA-system (see Definition 13 in Appendix A.5 and Defini-
tion 15 in Appendix A.6). That is, synthesizing the glue adaptor al-
lowed us to detect a possible deadlock in the components’
interaction. Note that in the corresponding CABA-system the dead-
lock occurs as well as in the AFA-system (since, by construction,
the deadlock has been reflected also in the model of the glue adap-
tor). The LTS of the centralized glue adaptor and the desired behav-
ior LTS shown in Fig. 4 (i.e., P) are taken into account in order to
automatically synthesize a distributed adaptor A that, in the corre-
sponding DABA-system, will prevent the deadlock and make the
components interact by following only the interactions specified
by the LTS of P.

The syntax and the meaning of the transition labels of P is the
same as the one used for the glue adaptor LTS except for two kinds
of actions: (i) a universal action (i.e., ?true_ or, equivalently, true_)
that represents any possible action, and (ii) a negative action (e.g.,
I — Cl.a_2 or ? — Cl.a_2) that represents any possible action except
for the negative action itself (e.g., all the possible component ac-
tions but ! C1.a_2 or ?C1.a_2, respectively). Moreover, it is possible
to label transitions in the LTS of a desired behavior through the
boolean formulas built as either “OR” or “AND” combination of ac-
tions (only negative actions can be operands of the “AND” operator,
and only regular actions can be operands of the “OR” operator). For
instance, let a and b be two regular actions, the logical “OR” of a
and b is evaluated to true if (in the DABA-system) either a or b
are performed. Let x4, .. ., X, be regular actions, we denote the log-
ical “OR” of x4, ..., x, by [X1, ..., X,]. Analogously, let a and b be two
negative actions, the logical “AND” of a and b is evaluated to true if
an action different from both a and b is performed. Let x4, ..., x, be
negative actions, we denote the logical “AND” of xq,...,x,; by
{Xl. . ,Xn}.

Informally, by referring to Fig. 4, P specifies all AFA-system
behaviors that guarantee the evolution of all components in the
system. It specifies that c2 and €3 can send C1.a by necessarily
using an alternating coordination protocol that is initiated by c2
(see the outgoing transition from the state SO labeled by

Fig. 3. LTS of the centralized glue adaptor in the CABA-system.

2216

{-C1.a_2,!-C1.a_3} 11 a_3
IC1.a_2
0 -

M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236

{1-C1.a_2,-C1.a_3}

S1

Fig. 4. LTS of the desired behavior P.

! Cl.a_2). In other words, it means that if ¢2 sends C1.a then it
cannot sends C1.a again if ¢3 has not sent C1.a. The distributed
adaptor to be synthesized (to form the correct DABA-system) will
ensure fairness by satisfying this desired behavior.

Since P predicates on the system global states, each node can
model more then one (global) state of the DABA-system to be
assembled. For instance, the state SO of P matches with S0, 83,
54, 88, 89, 810 of the glue adaptor, and S1 of P matches with the
remaining states.

5. Method description and formalization

In this section, we start by describing our method and then we
gradually formalize it by means of a detailed discussion and algo-
rithmic descriptions. These descriptions concern the assembly-
time procedures for analyzing both the centralized glue adaptor
LTS and the desired behavior LTS in order to retrieve information
that is required for prevention purposes. Furthermore, we describe
the local wrappers run-time procedures for intercepting the com-
ponents’ standard communication and mediating it by exchanging
additional communication, when needed. This section also pro-
vides the correctness of our approach and concludes with a brief
discussion about the overhead due to additional communication.

5.1. Method description

Our method (see Fig. 5) assumes as input: (i) a behavioral spec-
ification of the AFA-system formed by interacting components. It is
given as a set {Cy, ..., C,} of LTSs (one for each component). We re-
call that the behavior of the system is modeled by composing in
parallel all the LTSs and by forcing synchronization on common
events and (ii) the specification of the desired behavior that the
system must exhibit. This is given in terms of an LTS, from now
on denoted by Pyrs.

These two inputs are then processed in two main steps:

(1) by taking into account all component LTSs, we automatically
derive the LTS A that models the behavior of a centralized
glue adaptor. At this stage, A models all the possible compo-
nent interactions and it does not apply any adaptation. In
other words, A performs standard communication simply
routing messages among the components. In this way, it rep-

resents all possible linearizations by using an interleaving
semantics (see Appendix B). A is derived by performing an
LTS unification algorithm. Informally, as shown in Section 4
and formalized in Appendix A, this algorithm is a kind of par-
allel composition of component LTSs where for each pair of
LTSs that synchronizes on common send/receive actions
(e.g.,C2and C1 on ! Cl.a and ? C1.a, respectively), two subse-
quential transitions (i.e., a receive followed by a send transi-
tion) are produced on A (e.g., ?C1.a_2 followed by ! Cl.a_1). It
is worth recalling that each state of A (i.e., an AFA-system
global state) is a tuple (Sy,...,S,) where each S; is a state
of C; (see Fig. 6). For instance, the state S2 of the centralized
glue adaptor, shown in Fig. 3, encodes the corresponding
AFA-system global state into the tuple (51, S1, SO) of C1, C2,
and (3 states, respectively. Hereafter, when the current state
of a component appears in a tuple representing a global state
we simply say that the component “is in” that global state. It
is worth mentioning that, in general, a component state S;
might appear in more than one state of the LTS of A. As intro-
duced in Section 3, the first step terminates by checking
whether enforcing Py s is possible or not. This check is imple-
mented by a suitable notion of refinement (Milner, 1989).
Refinement, in general, formalizes the relation between
two LTSs at different level of abstractions. Refinement is usu-
ally defined as a variant of simulation. In this paper, we use a
suitable notion of strong simulation (Milner, 1989) to check a
refinement relation between two LTSs. For a formal descrip-
tion of this trace containment check, refer to Appendixes A.7
and A.8. This first step is inherited from the existing
approach (Tivoli and Autili, 2006) to the synthesis of central-
ized adaptors. Deeply describing this step is out of the scope
of this work since the novel contribution of this work mainly
concerns the second step of our approach. As already men-
tioned in Section 1, whenever P;ts ensures itself deadlock-
freeness and its traces are all traces of the adaptor LTS, such
a step is not required and, hence, A is not generated.

In the second step, if A has been generated and it has been
checked that P15 can be enforced on it, our method explores
A looking for those states representing the last chance before
entering an execution trace that leads to a deadlock. For
instance, in Fig. 3, the state S4 represents the last chance
state before incurring in the deadlock state S7. This

—

[c1] [c2]

[c1] [c2]

synthesis of the
centralized glue

adaptor LTS | A |
C3 C4
AFA system's
model (LTSs) Iﬂ, Iﬂ,
+ synthesis of the
desired behavior LTS ac%%'ﬁéi??;;;?o?nd
P (i.e., actual code of
LTS

the component local
wrappers)

Fig. 5. Two-step method.

M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236 2217

e 5>

[DeadLock] [DeadLock] S 99

Fig. 6. A last chance node S of A.

information is crucial for deadlock prevention purposes. The
search of the last chance states is realized by means of Pro-
cedure AVisit, see below. The aim is to save those states into
the local wrappers of the components that could lead the
system from a last chance state to a deadlock by means of
a so-called critical action. The idea is therefore not to allow
a component to perform a critical action before being sure
that the system will not reach a deadlock state. By referring
to the brief discussion about controllability issues given in
Section 3, we recall that, for us, all the component actions
are controllable and, hence, such a critical action can be dis-
carded. Otherwise, if we would relax this assumption, AVisit
should be slightly modified in order to perform a controller
synthesis step (Ramadge and Wonham, 1987; Brandin and
Wonham, 1994) that “backtracks” by looking for the first
controllable action that can be discarded to prevent the exe-
cution of the critical action. The set of last chance states and
associated critical actions will result modified accord-
ingly.The second step also explores P;1s to retrieve informa-
tion crucial for undesired behavior prevention. The aim here
is to split and distribute Pts in a way that each local wrapper
knows which actions the wrapped component is allowed to
execute. This is realized by means of Procedure PVisit, see
below. Referring to Figs. 3 and 4 for instance, the wrapper
of component C3 must not allow the component to send
the request Cl.q, if the current global state of the system
matches the state SO in P, hence enforcing the desired behav-
ior P. The sets of last chance states and allowed actions are
stored and, subsequently, used by the local wrappers as
basis for correctly synchronizing with each other by
exchanging additional communication. In other words, the
local wrappers interact with each other to restrict the com-
ponents’ standard communication (modeled by A) by allow-
ing only the part of the communication that is correct with
respect to deadlock-freeness and Pi1s. By decentralizing A,
the local wrappers preserve parallelism of the components
forming the system.The exchanged messages among wrap-
pers for synchronization purposes is realized by means of
the two procedures Ask and Ack, see below. For now, it is suf-
ficient to say that the first is used to ask the permission to
the other wrappers before allowing a component to proceed
with a critical action. The second is used to reply to a mes-
sage sent by procedure Ask when the global state is safe.
The description of how Ask and Ack allow the wrappers to
correctly exchange, at run-time, synchronization communi-
cation (with respect to deadlock-freeness and the specified
desired behavior) will be clear in Section 5.2.In the following
section, we formalize the second step of our method. Here-
after, we assume that A has been generated.

5.2. Second step formalization

As described before, the second step gets as input: (i) the set
{C1, ..., Gy}, (ii) A and (iii) P1s. In order to detect deadlocks, our ap-

proach explores A and looks for sink states. A deadlock state (see
Fig. 6) is in fact a sink of A. We call Forbidden States (FS,) the set
of deadlock states (hereafter, the terms state and node are used
interchangeably) and all the ones within forbidden traces necessar-
ily leading to deadlock states (see Appendix A.6). A forbidden trace
in A is a path that starts at a node which has no transitions that can
avoid a forbidden state and thus necessarily ends in a sink (see for
instance Fig. 6). To prevent the system from reaching states in FS,
we need to identify a specific subset of A’s states that are critical
with respect to FS4 (see for instance S in Fig. 6). In this way we
can avoid storing the whole LTS at runtime as we just need to store
the critical states. More precisely, in order to prevent the system
from reaching a state in FS,, we are only interested in those nodes
representing the last chance just before entering a forbidden state.
The last chance nodes have some outgoing edges leading to a for-
bidden state, the dead edges, and other ones, the safe edges (see for
instance the edges labeled with a_x and b_y in Fig. 6). We denote
by LC4 the set of all last chance nodes of the adaptor LTS A (see
Appendix A.6). Note that if L4 =0 and FS, # (), it means that all
the possible components’ interactions are deadlocking and, hence,
dealing with black-box components, there is nothing to do and our
method stops answering the user with an unsuccessful output. In
fact, in this case, it means that it is not possible to synthesize a
deadlock-free glue adaptor for the components given as input to
our method.

According to the labels of the dead edges we store in the local
wrappers associated with the corresponding components the last
chance nodes, and the critical actions that each component should
not perform in order to prevent the system from reaching a state in
FS, (in Fig. 6, the action c is critical for the component z). From the
implementation point of view, each local wrapper W¢, uses a table
Wéc (Last Chance table of W(,) of pairs (last chance state of A, critical
action of G;). Thus, once the whole LTS A has been visited, each local
wrapper knows the critical actions of the corresponding compo-
nent. Before a component can perform a critical action, its local
wrapper has to ask for permission from the other components
(see procedure AVisit). The last chance node table WLCC for a compo-
nent C, is formally defined as follows:

W = {(S,2)[3S € LCy and §
€ FS, such that S22 S is a transition of A}

The following procedure AVisit computes and distributes the last
chance node tables among the local wrappers.

Fig. 7 shows a possible execution of AVisit applied to the glue
adaptor shown in Fig. 3. Informally, after the left- and right-hand
side loops have been depth-first visited (see the arrowed arcs 1,
2, 3, and 4), AVisit backtracks to S4 since another branch must be
visited. Note that, at this point the procedure has updated a coun-
ter referred to the number of safe branches of the visited nodes,
and in particular of S4. From this state AVisit reaches the deadlock
state S7 (see the arrowed line 5). Then AVisit backtracks to S6 and
tags both it and S7 as forbidden states (see the arrowed line 6)
since no other branches can be visited form those states. Now AVis-
it backtracks to S4 and tags it as a last chance state since from it
either a deadlock state or safe states can be reached. Finally, AVisit
terminates in SO and the last chance tables of the local wrappers
are built. The only not-empty last chance table is the one of w2
as shown in figure.

More precisely, AVisit takes as input the glue adaptor A that
models all the possible interactions of the n components
(C1, ..., Cy). The procedure makes use of the following variables:
Wéc is the table of last chance nodes associated to component
C;; Flag_Forbiddens is a flag to check whether the current node S
leads to deadlock or not in A; Dead_Sons counts the number of sons
of the current node S that lead to dead branches of A; Safe_Sons

2218 M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236

last chance
table of w2 |
<§4=<852,50,81>,7C1.a>

T ettt
«l Jast chance)

ficrc 1

(=== L
Ichxeaah’ock |
L state

?C1.a_2 ,=. IC1.a_1
) \

Fig. 7. Procedure AVisit: a possible execution.

counts the number of sons of the current node S that lead to safe
branches of A.

Procedure (AVisit(state of A: S;)).

1: foreachi:=1tondo
2: WEXC =0
3: end for
4: Flag_Forbiddens := False;
5: Dead_Sons:=0;
6: Safe_Sons:=0;
7: mark S as Visited,
8: for each son S’ of S do
9: if the edge (S, S') is not visited then
10: mark the edge (S, S') as Visited;
11: if §' is not visited then
12: AVisit (S');
13: end if
14: if Flag_Forbiddeny then
15: Dead_Song++;
16: else
17: Safe_Song++;
18: end if
19: end if
20: end for

21: if Safe_Sons= =0 then

22: Flag _Forbiddens :=True;

23: end if

24: if Safe_Sons > 0 & & Dead_Sons > 0 then

25: for every dead edge, let «_x be the associated action,
W — WIS U(S, 2;

26: end if

Before performing a critical action (that might lead to a state
in FSy), a local wrapper has to verify (by performing additional
communication) if the global state represents a last chance state
with respect to that action. Since at runtime we do not store A,
this verification is made by enquiring the other local wrappers
about the states of the corresponding components, hence acting
accordingly. If a component is not in the inquired state, its
associated local wrapper immediately replies ensuring that the
component will not reach such a state before the inquired com-
ponent sends an unblocking message referred to such a state. In
this sense it is self-blocked with respect to the enquired state. If
the component is already in the enquired last chance state or it
is in the process of reaching it (i.e., it is performing its Ask proce-

dure with respect to an action that leads the component to the
enquired state), its local wrapper defers the answer and hence,
it attempts to block the enquiring local wrapper. The only case
in which an enquiring local wrapper has to ask for permission
from all the other ones is when the global state is a last chance
one (since nobody immediately replies). Once the inquiring local
wrapper receives an answer, it allows its corresponding compo-
nent to proceed with its standard communication by forwarding
the critical action. After that, it sends a message to unblock all
the other local wrappers previously inquired with respect to the
enquired state (additional communication). The unblock message
is needed because once a local wrapper allows an enquiring one
to perform a critical action, it ensures also that it will not reach
the last chance state before receiving an unblock message with
respect to such a state (see code lines 5 and 9 of Procedure Ack
below). In practice it is self-blocked just with respect to the en-
quired state.

Pr1s is visited and distributed among the local wrappers (see
Procedure PVisit reported below). Such a distribution is done by
means of another table Wg" for each local wrapper W¢, (called
Updating and Allowed actions table of W¢,) of tuples (state of Pyrs,
allowed action of G, state of Pirs, set of components, set of
components).

Let 1, ..., nbe the set of unique identifiers for the n components
to be assembled. Let C; = (51,T1,D1,80),...,Cn = (Sn, Tn, Dy, S8) be
the set of associated (relabeled) LTSs (see Appendix A.5) where
foreachi=1,...,n,S;is the set of states, T; is the set of transition
labels, D; is the set of transitions, and si is the initial state. Let
Pirs = (Sp, Tp, Dp, po), then W¢* is formally defined as follows:

W = {(p,o,p' . ACy, ACy)|Foi € Ty : aizzyl A (p,1,p') € Dp}
where

ACp = {j|30j € Tj: ojzyl A(p,l,p") € Dp for some p” € Sp and some I' € Tp},
ACy = {k|Fok € Ty : ak2yl" A(p',I",p") € Dy for some p” € Sp and somel” € Tp}

and according to the semantics of action labels in the desired
behavior LTS (introduced in Section 3.2 and defined in Appendix
A.7), =2y is a matching operator between a component action label
o and an action label [of the desired behavior LTS. The first three
elements of each tuple represent a transition of Pirs. The fourth
(fifth) is the set of (identifiers of) Active Components (AC, and ACy,
respectively), ie., the ones that can perform some actions
“matching” with a transition outgoing from the state of P 1s speci-
fied by the first (third) element of each tuple (i.e, p and p’ in the
definition).

M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236

Fig. 8 shows a possible execution of PVisit applied to the desired
behavior LTS shown in Fig. 4. Informally, considering a depth-first
visit as shown in figure, the allowed action tables are updated as
follows. The transition 1 specifies that component C2 “moves”
the current state of P from SO to S1 when performing action
1C1.a. Moreover, by means of a sub-procedure, we store in the
same entry of the allowed action table of w2 (i.e., the wrapper that
supervises C2) also the set of components that can perform at least
one action in the new state of P. Actually, since all the components
are allowed to perform at least one action in both states SO and S,
the fourth and the fifth items of each table entry are set to * * The
allowed action table of w2 and of all the other wrappers are up-
dated by proceeding with the depth-first visit on the transitions
2,3, and 4, in an analogous way. At the end of the visit, the output
of PVisit is given by the set of tables shown on the left-hand side of
Fig. 8. Note that the table corresponding to w1 allows component
C1 to perform any action without moving the current state of P.

By means of PVisit each local wrapper knows its allowed actions
that can change the state of P;1s. Moreover, a local wrapper knows
also which are the active components that can move and which
must be blocked according to the current state of Pirs. Let us as-
sume that a component C; is going to perform an action contained
in its table W”A If it can proceed according to the current state of
Pyts, then all the other active components are blocked by sending a
blocking message to the corresponding local wrappers. Once C; has
performed the action, all the components that can move in the new
state of Pirs are unblocked and they are made aware of the current
state of Pi1s (see code line 28 of Procedure Ask below). Note that if
an action of an active component does not change the state of Pyts,
it can be performed without exchanging messages among the sys-
tem components, hence maintaining pure parallelism (this is real-
ized by Procedure Ask, code line 31).

Considering the table of updating allowed actions, let Look-
ahead(state of P1s: p) be a procedure that given a state p of Pyys, re-
turns the set of components that are allowed to perform at least
one action in the state p. PVisit takes in Py1s that predicates on a
(sub-)set of the n components to be assembled. The procedure
makes use of the following variables: Active_Components (AC,) is
the set of components that are allowed to make a move in the cur-
rent state p; Next_Components (NC,) is the set of components that
must be allowed to move once the current state of P;rs has changed
to p' (i.e., NG, = AC,); W is the table of updating and allowed ac-
tions of the component C;.

Procedure (PVisit(state of Pirs: p;)).

1: foreachi:=1tondo

2219
3: end for
4: Active_Components := Lookahead(p);
5: Next_Components := ();
6: mark p as Visited;
7: for each son p’ of p do
8: if the edge (p, p’) is not visited then
9: mark the edge (p, p’) as Visited;
10: Next_Components :=Lookahead(p’);
11: for each C; € Active_Components allowed to perform
an action o by the label of the edge (p, p’) do
12: wt = wUp, «, r, Active_Components,
Next_Components);
13: if p’ is not visited then
14: PVisit (p');
15: end if
16: end for
17: end if
18: end for

Once this procedure has been performed, each local wrapper
knows the states of P;1s from which it can allow the corresponding
component to perform a specific action. Moreover, once the com-
ponent performs such an action, it knows also which are the com-
ponents that must be blocked and which ones must be unblocked
in order to respect the behavior specified by P;rs.

To summarize, the setup of Last Chance and Updating and Al-
lowed action tables is realized by means of the procedures AVisit
and PVisit. They are depth-first visits of A and Pis, respectively.
These procedures are performed at construction-time and, after
their execution, A and P;ts can be discarded.

We now describe how local wrappers use, at run-time, the built
tables to correctly interact with each other ensuring (i) deadlock-
freeness and (ii) the behavior specified by Py1s (e.g., the LTS shown
in Fig. 4 in our explanatory example). Before describing it in details,
by referring to Fig. 9, let us give some intuitions of the method we
use. Note that, while interacting, components may need an order-
ing among the sent and received messages. This can be realized in
several ways and in our implementations we have made use of the
standard time-stamp method (see Appendix B). However, for the
sake of readability, we prefer not to make explicit this detail in
the rest of the paper. The method we use is based on two proce-
dures called Ask and Ack, respectively, whose pseudo-code is
shown below.

Referring again to Figs. 3 and 4, in Fig. 9 an high-level descrip-
tion of the messages that can be exchanged between the wrappers
and the components is shown. These messages are exchanged in

2: WLC’,A =0; order to ensure deadlock-freeness and the desired behavior
[allowed action |
I t;b 2 S" Al | |[allowed action allowed action allowed action ||
| = 1’*’ 1’*’*> | table of w1 table of w2 table of w3 l
I <S0,*,S0,*,*> | <S1,5,81,5*> <S0,! C1.a,51,%,"> <S1,IC1.¢,51,°*>
allowed action | | <S1,? C1.b,S1,**> <S1,2C1.d 51, > | [= Tw_d _ﬁ 7 _|
|itteon | L sician]| | [
<S0,! C1.a,S1,*,*> e —— _——— = — —
I 51,2 C1.b,51,%,* 3 <S1,551,**> I
BRI l\gcm_z,!-cu_a] 1(;1,, {t-ct1.a_2)-C1.a_3) | : |
<S0,? .b,S0,%,*> | 4 2 | all;l:)/fed;cxzn |
| [allowed action IC1 _a 2
table of w3 | -~ | [<sorctast s> 1)
I <S1.1C1.c s'f* > | 0 .;E-_l S1 | <S1,? C1.b,S1,**> |
I <S1,? C1.d,S1,*,*> | —— e = = e e = = e = e = = == = —— I | allowed action
| <S1,! C1.a,S0,*,*> | allowed action allowed action allowed action table of w3 |
<S0,! C1.¢,S0,*,*> | I table of w1 table of w2 table of w3 | | <S1,1C1.¢,81,*,*> I
| <S0,? C1.d,S0,*,*> | no entries <S0,! C1.a,S1,*,*> no entries l |_<s1 2 C1.d,51,",*> ,

Fig. 8. Procedure PVisit: a possible execution.

2220 M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236

| Cl | | [| C3
wl w2 w3
1Cla o Aske..
_ ASK(. -
ACK(..)) o
™| UNBLOCK(...)
_ UNBLOCK(..) >
BLOCK(...)
_ BLOCK(...) -
Cl.a
Cla <<
UNBLOCK(...
=~ ~_ UNBLOCK(...))

<3——— standard communication

-¢—— additional communication

Fig. 9. Procedures Ask and Ack: a possible execution.

specified by P (see Fig. 4). For the sake of simplicity, the scenario
that we show concerns only the sending of the message !C1.a by
C2 when the system’s execution is in a certain global state. When
C2 wants to send the request Cl.q, first of all it needs to know
whether the global state is S4 (i.e., (S2, SO, S1)), since it knows from
its stored table of last chance states that Cl.a is a critical action
with respect to S4. This is realized by means of procedure Ask that
enquires the wrappers of C1 and C3 (i.e., the sending of the ACK
messages towards w1l and w3 shown in Fig. 9) in order to retrieve
the global state. If at least one wrapper, among w1 and w3, replies
that C1 or (3, respectively, are not in S4 of the glue adaptor, then
w2 will receive an ACK message that allows component C2 to send
the desired request. The UNBLOCK messages, after the ACK mes-
sage, say to all the local wrappers that were blocked with respect
to the global state S4, to proceed. Moreover, before sending the re-
quest, C2 needs also to know if it is allowed to proceed according to
the desired behavior P. This is realized by maintaining at each time
a subset of active components corresponding to the states of P in
which such components are allowed to perform actions. In our
example, C2 would not be active if the global state matches with
S1in P. In the case the global state matches SO of P, w2 has to block
all the other active components since the state of P is going to
change. This is realized by means of BLOCK messages. Once (2
has performed its action, w2 must make active all the components
that can perform some action in the new state by means of UN-
BLOCK messages. The information concerning active components
is stored in the tables of allowed actions spread among wrappers,
and the exchanged messages are still managed by procedures Ask
and Ack.

More precisely, let C; be an active component that is going to
perform an action « (i.e., in C, there is a state transition labeled
with «, and « is allowed with respect to Pits, i.e., o« appears in
ng‘). The associated local wrapper W¢, checks if « is (i) a critical
action (i.e., « appears in Wéf) or (ii) if « changes the global state
with respect to Pi1s. If it is neither (i) nor (ii), then W, forwards
o to the right component. In the case of (i), W, enters procedure
Ask described below in order to ask for the permission to forward
o This is done by checking if for any pair (S,«) € W there is at
least one local wrapper W¢, whose corresponding component C,
is not in S. In the case of (ii), W, enters the procedure Ask in order
to try to block all the active components and after having per-
formed ¢, it unblocks the components that can be activated with
respect to the new state reached over Pirs.

Procedure (Ask(action: o;)).

1: Let C, be the current component that would perform action «
and let S, be its current state and p be the current state of
Pyrs;

Let (t;);" be the ith tuple contained in the table WZ* and
(t)Y4j] be its jth element;

: flag_forbidden := 0;

D if3i | ()] == p &&(t)*2) == « then

if « appears in some pair of W¢ then
for every entry (S,«) € W do

i=1;
while no “ACK, «” received &% i < n do

e A

Let S = (S¢,,...,Sc,); Wc, asks to local wrapper W¢,
if it is in or approaching® the state Sc,;
9: i+t+;
10: end while
11: if i > n then
12: WAIT for an “ACK, «” message of one enquired com-
ponent C;
13: end if
14: if i > n then
15: i:=n;
16: end if
17: forj:=1toido
18: send “UNBLOCK, «” to Wc,;
19: end for
20: end for
21: endif
22: ift)Y 1) = (t)¥[3]then
23: for each component C; € t)Y[4] do
24: send “BLOCK” to WCJ.;
25: end for
26: perform action «;
27: for each component C; € (t;)*[5] do
28: send “UNBLOCK, (t;);"[3]" to Wq,;
29: end for
30: else
31: perform action «;
32: end if
33: end if

Note that, by code line 12, the current local wrapper is self-
blocked until some other local wrapper gives it the permission to
proceed, i.e., an “ACK”. The “UNBLOCK” messages of code line 18
say to all the local wrappers that were blocked with respect to
the enquired forbidden states, to proceed. The “UNBLOCK” mes-
sages of code line 28 are instead to unblock components due to
the change of Pi1s state occurred after having performed action o.
On the other hand, when a local wrapper receives a request for a
permission, after having given such a permission, it is implicitly
self-blocked with respect to the set of states it was enquired for.
The following procedure describes the “ACK” messages exchanging
method.

Procedure (Ack(last chance state: S; action: «;)).

1: Let W¢, be the local wrapper (performing this Ack) that was
enquired with respect to the state S and the action « that G,
would perform.

2: if G is not in S && W¢, didn’t ask for permission to get in S
then

3: send “ACK, «” to Wc, that allows C to perform the action

6 C; is performing its Ask procedure with respect to an action that leads C; to Se,-

M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236 2221

o

4: if G, would reach S with the next hop then
5: WAIT for “UNBLOCK, «” from W¢,;

6: endif

7: else

8:

once C, is not in S send “ACK, o” to W¢, that allows C; to
perform the action «;
9: if no “UNBLOCK, «” from W, has been received then
10: WAIT for it;
11: end if
12: end if

The “WAIT” instructions of code lines 5 and 10 block the current
local wrapper in order not to allow the corresponding component
to enter a forbidden state. Note that, while the “UNBLOCK” message
has a one-to-one correspondence, that is, for each message there is
a receiver waiting for it, the “ACK” message can be sometimes use-
less. In fact, a local wrapper needs just one “ACK” message in order
to allow the corresponding component to proceed with the en-
quired critical action. All the other possible “ACK” messages are
simply ignored.

5.3. Correctness

We now provide the correctness of our method. Given A and
P1s, we show that our method synthesizes local wrappers that
(i) allow the composed system to be free from deadlocks and (ii)
allow Pp7s to be exhibited.

We prove (i) by focussing on the last chance nodes. Since the
synthesis of A is correct as proved in Tivoli and Autili (2006), we
can assume that the last chance nodes are correctly discovered
by means of the procedure AVisit that performs a standard
depth-first visit. Thus, our proof can be reduced to show that the
local wrappers disallow the system to reach a forbidden trace. Note
that, by construction, such a trace can be undertaken only through
a last chance node by performing an action that labels one of its
outgoing dead edges. Let us assume by contradiction that the com-
ponent z can perform the critical action ¢ from the last chance state
S, and that S has an outgoing dead edge labeled by c_z (see for in-
stance Fig. 6). Since, as already noted, the last chance nodes are
correctly discovered, when procedure AVisit is visiting S, it cor-
rectly stores in W the tuple (S, c). At runtime, whenever the com-
ponent z would perform action ¢, W, checks if c is a critical action
by means of code line 4 of its Ask procedure. It then starts to ask for
permission (at least one “ACK” message is required) from all other
components by means of the “while” statement (code line 7 of the
same procedure). Each enquired local wrapper W¢,, by the Ack pro-
cedure, checks if the current state of the corresponding component
Ciisin S. If it is, it does not reply to z until it does not change state
(code line 8 of the Ack procedure). In doing so, until the system
state remains S, no local wrapper will reply to W,. Since W, is
blocked on code line 12 of the Ask procedure until no “ACK” mes-
sage is received, a contradiction follows by observing that action
c can be performed by z only at code line 26 of the same procedure.

To prove (ii), let us assume by contradiction that the component
x performs the action a when it is not allowed by P;rs, that is, the
current state Sp of Pr1s has no outgoing edge labeled by a_x. First of
all, in order for a component to be active, either its local wrapper
has received an “UNBLOCK” message from some other local wrap-
per (by means of code line 28 of the Ask procedure) or the system
has just started and WfA has some entry with Sy (the initial state of
A) as first element. In both cases, each time a component is active,
its local wrapper knows exactly which is the current P;1s state. By
construction, x can perform action a if there exists an entry in W%
whose first element matches with the current state of Prs and

whose second element matches with a (see code line 3 of the Ask
procedure). The contradiction follows by observing that such an
entry was obtained by visiting Pi s hence, by construction, there
must exist an outgoing edge whose label matches with a_x from
the node labeled by Sp.

5.4. Overhead

Our approach adds some overhead due to the messages that the
local wrapper have to send each other in order to synchronize
themselves when required (i.e., additional communication). This
happens when a component has to perform an action that either
might lead to a forbidden state according to deadlocks or is not al-
lowed according to P;rs. In the worst case, this means sending, for
each action, a message to all the other components in order to
either ask for permission to perform the current action or commu-
nicate that the state of P;s is changed. Of course, in practical cases,
where usually many parallel computations are allowed, the over-
head is much smaller and the additional messages do not decrease
system performance.

In the following section we introduce the SyntHesis tool that
implements the presented approach.

6. The SyntHEsis tool

By referring to Fig. 10, the method implemented by the current
version of SyntHesis assumes the following data as inputs:

(a) the interface specification of the components to be assem-
bled. It is given as a set of IDL files, one for each component
implementing a server logic (obviously, for components that
implement only a client code there is no IDL). According to
“design by contract” approaches (Szyperski, 2004), we can
assume that each of these IDL files is augmented by the com-
ponent developer through a commented header. Such an
header contains a relative path’ which externally refers to
an XML file encoding the specification of the interaction pro-
tocol (see input (c)). For a client, such an XML file is directly
provided by the client developer. In our context, a component
always respects its interaction protocol specification since it is
provided by the developer of the same component, who is
aware of the information needed to specify the component
interaction protocol.

(b) The LTS-based specification of the desired behavior.

(c) For each component (either client or server), the specifica-
tion of its interaction protocol with the expected environ-
ment. It is an XML file that encodes an high-level Message
Sequence Chart (hMSC). An hMSC specifies the possible sce-
narios for message exchanging between the component
and its expected environment, and the possible continua-
tions among the scenarios. For a server component, this
XML file is referred within its augmented IDL.

These three inputs are then processed in two main steps:

(1) considering inputs (a) and (c), SyntHEesis automatically derives
the component LTSs. As already said, this is done by imple-
menting a revisited version of the algorithm described in Uchi-
tel et al. (2004). However, SynTHEsis can also take these LTSs
directly as input by providing the user with LTS drawing tools.
From the component LTSs, SynTHESIs automatically derives the
LTS A of the centralized glue adaptor (i.e., output (d)).

(2) After A has been generated, SyntHEsis explores both it and the

7 Note that, this is only an implementation choice and it can easily be changed.

2222 M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236

Components’ specification

(hMSCs)
= LTS of the
centralized
glue adaptor
SYNTHESIS e

Desired behavior LTS

{612 2)C12.3) 10103 (€12 212 3)

(b) -Q:' ez “_\é‘}

a component LTS

o

Actual code of the

(s

correct local wrappers

HRESULT CKCoordinaterPSat::req(int val, BSTR

Components’
interfaces
(augmented IDL files)

(a)

| { [ARESULT CKCoordinatorPSat::req{int val, BSTR
i o {
e e > e
Fre T e eI TR TS T apeave HRESULT r = 8_0K;
Ty
1
e if(chld == 1) {

if (Element0f(0)) { // a state in
// method call delegation
br = pIServer->req(val, stat

// Update tiae vactor of cons
slabelVect.erase(slabalVect.
sLabelVact .push_back(5);

— // ...end of updating

— }

else if(Element0f(3)) { // a sta

Fig. 10. The SynTHESIs tool.

LTS of the desired behavior to synthesize the actual code of
the correct distributed adaptor (i.e., output (e)). It is imple-
mented as a set of EJB component wrappers (Autili et al.,
2007). Each wrapper is developed by using Aspect] that eas-
ily supports the wrapper tasks of intercepting the compo-
nent messages and correctly coordinating them. Note that
Aspect] is only one possible implementation choice.

7. Architecture of the SyntHEsis tool

In Fig. 10 we have shown the input and output data of the
SyntHEsis tool. Now, by means of capital letters, we obtain a direct
mapping between Figs. 11 and 10 that allows us to correlate each
module with the I/O data it performs.

In the reminder of this section, we briefly describe each SynTHEsIs
module.

Module (A), component interface parser: this module contains a
superclass (i.e., “IDLParser” entity in Fig. 11) that manages a spe-
cific data structure which is for storing an abstract representation
of an IDL file possibly given as input. That superclass has to be spe-
cialized in order to implement a parser of IDL files based on a par-
ticular IDL notation (e.g., Microsoft IDL for COM/DCOM, DCE/IDL for
CORBA, and Java IDL for EJB). In the current version of SYNTHESIS,
we specialized that class to implement two parsers: one for Micro-
soft IDL (MIDL) files and the other for Java IDL files.

Module (B), LTS specification of the desired behavior: this mod-
ule is used to specify the desired behavior for the system to be
built in terms of LTSs. The current implementation of this mod-
ule encodes each LTS as a binary object by exploiting Java seri-
alization. A corresponding version based on XML is still work
in progress. Each LTS describes component interactions that
must be cooperatively guaranteed by the component wrappers
to be generated.

Module (C), hMSC specification of the components: this module is
used to specify/display/process the interaction behavior of each
component with its expected environment in terms of an hMSC

specification. In doing that, this module exploits an ad hoc library
that we have developed to allow creation, validation and manipu-
lation of hMSCs encoded in XML. To check if these XML files are
valid, an ad-hoc XML schema is used. This module requires a suit-
able implementation of the “IDLParser” entity (see the relation
“requires” between the two).

Module (D), builder of the centralized adaptor model: this module
is responsible for deriving the model of the centralized glue code.
In particular, it is specialized by the “LTS Unificator”, “DlockEraser”
and “Desired Behavior Analyzer” entities shown in Fig. 11D. These
entities respectively implement: (i) the LTS unification algorithm
that is for building the LTS of the centralized adaptor, it uses the
“LTS Builder” that exploits the module C. Taking as input the hMSC
specification of the components, it builds and outputs the compo-
nent LTSs. According to the hMSCs data format, an LTS is coded in
XML. (ii) The last chance states identification algorithm. (iii) The al-
lowed actions (with respect to the specified desired behavior)
identification algorithm.

Module (E), generator of the component wrappers actual code: this
module implements a generator of the component wrappers actual
code. It is structured analogously to module A and, hence, it refers
to one or more specific development platforms. Currently, it sup-
ports the generation of the code implementing either centralized
COM/DCOM or distributed EJB adaptors. Note that a component
adaptor does not care about checking the value of actual parame-
ters of a component method. In fact, it is merely a “delegator” of
method calls, whose forwarding logic respects both deadlock-free-
ness and the specified desired behavior. This explains why, in
drawing the hMSC specification of the components, SYNTHESIS
does not require a user to specify the actual parameters of a meth-
od call.

8. Case study

In this section, we describe our approach at work by means of an
industrial case study. The case study concerns the semi-automatic

M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236

2223

|
|
I ‘ 1.n r—-————_—_——_——_——_——_———— 1
I | bmsc | i LTS 1]
I i requires Builder | |
—_—— e e —— | i~
| Adaptor (D) :
) i requires ! Buﬂger requires I
requires
I |
—————
(B) ' [Ll
| Desired [0.n] requires /| Be‘:::\rl?or requires 1| Dlock |requires 1 LTS |
- \ g
Ee'EVEr_ _| | Analyzer Eraser Unificator |
I_A_ —_—— e — — ._o 1_ _________ “-__-._“-._(-:;:j-;___-._-__-._g_l— —
I () L) IDLParser requires Generator ()I
| |
| |
[A ____ [. [\
[MIDL Parser |[Java IDL Parser . | Other ' Visual C++ EJB with i_ Other :l
|| (COM/DCOM) (EJB) L_!I:_)I_.[’g[s_e_r___l with ATL Aspectd | development ||
————————————————— | Lcomncom) || "*P |__platform__ |

Fig. 11. The SvnrHEesis architecture.

assembly of part of a large distributed system built in the context of
the CUSPIS project (CUSPIS).

8.1. The CUSPIS project

In European society, increasing importance is given to the issue
of safeguarding, enjoying and supporting Cultural Heritage. The
European Commission gives high importance to that issue, pro-
moting actions for protection and safeguarding, improving under-
standing and dissemination of culture and history of the European
citizen, making Cultural Heritage increasingly available and
accessible.

The CUSPIS project (CUSPIS) combines the Cultural Assets
(CAs)® infrastructure with the GALILEO and EGNOS infrastructures
in order to support the Cultural Heritage safeguarding and protec-
tion. To this extent the CUSPIS project focuses on the specification,
implementation and deployment of secure information mobility
platforms that offer two basic services: Cultural Assets Management
(CAM) and Cultural Assets Fruition (CAF).

CAF concerns the dissemination of CAs information everywhere,
e.g., people can go around in a museum and receive CAs informa-
tion on their mobile devices. CAM concerns the secure transport
of CAs from a renter (the organization requiring the CAs) to the
owner (the organization that holds the CAs).

The CAM process requires three sub-processes: (i) the certifi-
cate request, (ii) the certificate generation, and (iii) the monitoring
of the CA transport.

In this work, we focus on the CAM service and we show how our
approach has been used to automatically implement the certificate
generation service out of a set of already implemented black-box
components. In Fig. 12, we show the two basic activities that the
certificate generation service has to support.

In the first activity (see Fig. 12A) the renter and the owner pro-
duce a request certificate that expresses their approval to move a
CA from the owner location to that of the renter (ie., the CA
journey). In the following we describe in details all the request

8 In the context of the CUSPIS project, examples of cultural assets are sculpture,
pictures and so on.

certificate fields. The CA_ID field is a signed string that contains the
unique identifier of the CA to be moved. Motivation is a string that
describes the motivation leading to the Cultural Asset journey. The
field renter (resp., owner) contains the X500 name (ITU-T) of the
renter (resp., owner) entity. The field RenterSignature (OwnerSigna-
ture) contains the signature of the fields (owner, Motiva-
tion,owner,Renter) that is generated with the renter (resp., owner)
private key.®

In the second phase (see Fig. 12B) the CA owner and a ministry
authorized person produce a validation certificate that is used to
certify the ministry permission to the CA journey. The request cer-
tificate field contains the request certificate produced during the
first activity. The owner and ministry fields contain the X500 name
of the owner and ministry authorized person, respectively. The
Ministry Signature (resp., Owner Signature) contains the signature
of the fields (request certificate, Owner, Ministry) that is generated
with the owner (resp., Ministry) private key. In the following
section we describe the set of existing components that we have
taken into account to automatically and correctly assemble the
part of the CUSPIS project that realizes the certificate generation
service.

8.2. The existing components and SynTHESIS at work

In Fig. 13, we show the CUSPIS sub-system that actualizes the
certification service.

The component adapter Ao, the X500 name server So, and the
security component To reside on the owner host. The component
adapter Am, the X500 name server Sm, and the security component
Tm reside on the ministry host. The renter certificate client Cr, the
owner certificate client Co, and the ministry certificate client Cm
can access the owner and ministry hosts through the public net-
work. The clients Cr and Co interact in order to produce the request
certificate. The clients Co and Cm interact in order to produce the
validation certificate. We remark that the request certificate must
be always produced before the validation one.

9 SHA with RSA algorithm is used to produce the signature.

2224 M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236

cA_ID | Request
motivation Ceﬂiﬁcate

renter

Owner

Owner
signature
Renter
signature

i (A)\ mﬁ/’:

renter

Request
(Certificate

Owner
Ministry
Owner
signature
Ministry
signature

Validation
Certificate

owner ministry

L e X

Fig. 12. The certificate process.

In our case study, we have to face two main problems of adap-
tation. The first problem is a consequence of the use of existing
components in a different context from the one they have been
originally thought. In particular, these components were devel-
oped in a previous project and we want to reuse them in the con-
text of the CUSPIS project because they already realize the required
functionalities. The second problem is due to the use of the adaptor
and of the X500 server in different hosts, i.e., the ministry and the
owner host. These different uses require different adaptations of
the same components.

In Figs. 14-17, we show the LTSs of our existing components as
they are displayed by the SyntHesis tool. The LTSs of the two adapter
components Ao, and Am are shown in Fig. 14. Fig. 15 shows the LTSs
of the server components So, Sm, To, and Tm; finally the LTSs of the
two client components Cr, and Cm, and the LTS of the client compo-
nent Co are shown in Figs. 16 and 17, respectively. We recall that, a
?m (resp., !m) denotes a received (resp., sent) message labeled with
m. The state with an incoming arrow denotes the initial state.

The LTSs of the adapter and server components can be easily
understood by looking at Figs. 14 and 15, respectively. The LTSs

of the adapters and servers do not need further explanation be-
cause the semantics of their transitions is explained, in the follow-
ing, while discussing the LTSs of the clients.

In the initial state the renter (resp., ministry) client Cr (resp., Cm)
can send the connection request to the server So (resp., Sm) and,
from the state S1, it can receive the successful connection notifica-
tion. After a correct connection, the client (either the renter or the
ministry) can send the request setAdaptor (to either Ao or Am), fol-
lowed by the request setX500name (to either So or Sm according to
the previous call of setAdaptor). The setAdaptor request is used to set
the motivation and the CA_ID of the request certificate. The
setX500name request is used to set the X500 renter (or ministry)
name in the validation certificate. The request releaseX500 is sent
from Cr (resp., Cm) to So (resp., Sm) in order to release the resource
it has acquired. The request releaseAdaptor is used to release the Ao
(resp., Am) resource. Note that the releaseAdaptor request involves
the process of sending the renter (resp., the ministry) signature in
order to sign the request certificate.

The owner client Co (see Fig. 17) performs almost the same
behavior as the one of either Cr or Cm. The only difference is that

’ *
; Adapter Securlty Y
<
Ranter
Cerificate
Client
(Cr)
=
=
Owner =
Certificate g
Cllent H <Hi-
{Co) Kay
E store
Adapter
(Am)
Ministry
Certificate
Cllent X500
{Cm) Name
Server
{Sm) ;

ministry host

Fig. 13. The CUSPIS system: the certification sub-system.

M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236

IC1.getPrivateKey

-

?C1.setAdaptor

7C1.pkey ?C1.releaseAdaptor

component C1: the adapter Ao

IC3.getPrivateKey ?C3.setAdaptor

2 -
7C3.pkey

component C3: the adapter Am

Fig. 14. LTSs of the adapter components.

?C1.getPrivateKey

-

IC1.pkey

component C8: the security server To

?C3.getPrivateKey

| -

1C3.pkey

component C9: the security server Tm

2225

Co calls a setX500name followed by a setAdaptor, whereas Cr and
Cm call a setAdaptor followed by a setX500Name.

In Fig. 18, we show the LTS specified, by using SyntHesis, to mod-
el the system desired behavior that we wish to guarantee in order
to correctly assemble the previously specified components. We
denote it as Pys. By referring to 3.2, we recall that Pirs is an
high-level description of a desired behavior that we want to guar-
antee in the resulting DABA system that is being assembled.

Substantially, Pyts allows the ministry client Cm (referred as C5
within SyntHesis) and the owner client Co to interact with the min-
istry server (referred as C4 within SyntHesis) only after both the ren-
ter client Cr (referred as C6 within SyntHesis) and the owner client
Co (referred as C7 within SyntHEsis) have released the adaptor

?C2.releaseX500

component C2: the X500 Name Server So

?C4.releaseX500

component C4: the X500 Name Server Sm

Fig. 15. LTSs of the server components.

?C2.conNotify

i0ydepyrias g o)

aweuQEsXias'yi

S1 »
©
2
c
<]
Q
o™~
Q
IC1.releaseAdaptor
0 &
?7C4.conNotify
S1 2
k7]
g
c
<]
9
<
e

IC3.releaseAdaptor
0 o

4
Joydepyies g
aweuQQSXI8s |

&

component C5: the Ministry Certificate Client Cm

Fig. 16. LTSs of the client components Cr and Cm.

2226 M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236

?C2.conNotify
Ip-

!C1.setAdaptor

IC2.setX500name

1IC2.connect

!C1.releaseAdaptor

1C4.connect

IC4.setX500name

~

IC3.setAdaptor

S
o
&
©
g
&
v
o

Joidepyes)

aweuQpsXIas'y i

component C7: the Owner Certificate Client Co

Fig. 17. LTS of the client component Co.

resource (state S3 shown in Fig. 18). In other words, it models the
fact that the request certificate must be always written before the
validation certificate.

By referring to the method discussed in Section 5.1, by taking
into account the LTSs shown in Figs. 14-17, we automatically de-
rive a model of the centralized glue adaptor A. This is done by using
SyntHesis and performing the approach described in Inverardi and
Tivoli (2003). Finally, by taking into account the LTS specification
of the desired behavior that the composed system must exhibit
(see Fig. 18), we mechanically distribute the correct behavior of
A in a set of local wrappers each of them for each existing
component.

The generation of the LTS modelling the behavior of A took 11.5
minutes, by running SyntHesis on a 1.83 GHz Intel Core Duo processor.
This LTS has 8031 states and 15332 transitions. Due to the size of
the LTS of A, its graphical representation within the SyntHesis tool is
obviously unreadable, hence we do not show it. Despite this,
SyntHEsis returns useful information about the possible deadlocks
and its corresponding last chance nodes (hereafter, called also last
chance states).

For instance, the LTS of A has two sink states whose IDs are
S4842 and S5204. Beyond these two states, it has also eight, the
so-called, deadlocking states that are either sink states or states
always leading to deadlocking states. Their IDs are S4881,
S4994, S5215, S5240, S4841, S4891, S5203, and S5220. Corre-
sponding to these deadlocking states, there are eight last chance
states whose IDs are S3553, S3657, S3892, S3931, S3533, S3557,
S$3883, and S3894. From the states S4881, S4994, S4841, and
S4891 only the sink S4842 can be reached. From the states
S§5215, S524, S5203, and S5220 only the sink S5204 can be
reached. By referring to the last chance states mentioned above,
in Fig. 19 we show a fragment of the LTS of A that concerns the
forbidden traces originating from those last chance states. In

the figure the deadlocking states are drawn light-gray and the
sink ones are drawn dark-gray.

We recall that within the LTS of A a state is a tuple of compo-
nent LTS states. Furthermore, a transition label has the same syn-
tax as a component LTS transition label except for a suffix (e.g.,
“_ 57, % 7", “_4") that specifies from (resp., to) which component
A has received (resp., sent) the message. By referring to Fig. 19,
we show below the last chance states tables automatically gener-
ated by SyntHEesis after the execution of the procedure AVisit (see
Section 5.2). In order to prevent the detected deadlocks, all the
components can proceed freely except for Cm (i.e., C5 in SYNTHESIS)
and Co (i.e., C7 in Syntuesis). Thus, in the following we show Fr5
and FL that are the last chance state tables for the deadlock-pre-
venting local wrappers (i.e., w5 and w7) that supervises Cm and
Co, respectively. These tables are shown by using the same textual
format given as output by SYNTHESIS.

Last chance states table of wb:
<83553=<51,52,80,52,53,53,55,30,50>, ?C3.setAdaptor>
<83657=<50,52,81,52,53,53,54,30,50>, ?Cl.setAdaptor>
<83892=<81,82,50,582,83,53,59,30,50>, ?C3.setAdaptor>
<83931=<50,52,581,52,53,53,510,50,30>,
?Cl.setAdaptor>

Last chance states table of w7:
<83533=<81,82,51,580,83,55,53,50,50>,
?C4.setX500Name>
<835657=<51,580,51,52,53,54,53,50,30>,
?C2.setX500Name>
<53883=<51,52,581,50,55,33,53,50,30>,
?C4.setX500Name>
<83894=<51,50,581,52,54,33,53,50,30>,
?C2.setX500Name>

M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236 2227

{!-C4.connect_5,!-C4.connect_T7}

IC1.releaseAdaptor_6

IC1.releaseAdaptor_7

?C3.setAdaptor 5
?C1.setAdaptor_5

?C4.setX500name_7

IC2/setX500name_2

?C3.setAdaptor_5

?C1.setAdaptor_5

?C4.setX500name 7

?C2.setX500name 7

Fig. 19. Forbidden traces in the LTS of A.

By exploiting its last chance states table, each time the compo-
nent C5 (i.e.,, Cm) performs the action /C3.setAdaptor (resp., !Cl.set-
Adaptor), i.e., it invokes the method setAdaptor to Am (resp., Ao),
the corresponding local wrapper (i.e., the local wrapper w5) has
to check that the global state is neither S3553 nor S3892 (resp.,

neither S3657 nor S3931). By referring to Section 5.2, we recall that
this is done by means of the procedure Ask (performed by w5) and
the procedure Ack (performed by all the other local wrappers). The
Ask procedure is used (by w5) in order to suitably query all
the other local wrappers different from w5 and, hence, to know

2228 M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236

the current global state in terms of a tuple of component states.
The Ack procedure is used (by all the other local wrappers) in order
to either allow the querying component to perform an action or
temporarily block it (since the action would violate some behav-
ioral properties, e.g., the deadlock-freeness). The local wrapper
w7 behaves in an analogous way according to its last chance state
table.

After performing AVisit to derive the last chance state table for
each local wrapper, SyntHEsis performs PVisit (see Section 5.2) to de-
rive the updating and allowed actions table for each local wrapper.
This is done by taking into account the LTS specification P15 (see
Fig. 18). We recall that these tables are needed to distribute Pjts
among the local wrappers.

Following we show the tables of updating and allowed actions
used by each Local wrapper as generated by the procedure PVisit*.
Denoting by “ ” any possible value of a specified scope and by “
- S” any possible value of a specified scope except for the values
in the set S, Pirs is translated by procedure PVisit hence generating
the following tables of updating and allowed actions. Below we
show only the tables related to the local wrappers w5, w6, and
w7 Pegagsg for all the other local wrappers the tables are of type
<, , , , >that means that any action is allowed in any state.

Tablf of updating and allgwsd actions of wb:
<80, _ - {! C4.connect},s0, ke

<81, - {! C4.connect},s1, o

<82, - {! C4.connect},s2, ke

<s3, -{! 04.connect}*,sg, , >

<g3, ! C4.connect,30, , >

Tabls of updating and allowed act*icins of wé:

<so, -{! Cl.releaseAdaptoE};‘SO, , >
<go0, Cl rele%seAdaptor, s1, , >

<Sl, , 81, ,> .
<s2,” - {! Cl.releaseAdaptor}, 52, 5 >
<82, ! Cl.releaseAdaptor, 83, , >

<83, , 83, , >

Table of updating and allowed actions of w7:

*
<s0, -{!c1. releaseAdaptor,C4. connect}, SO, , >
<go0, Cl releaseAdaptor,S2, , > N
<s1, -{!c1. releaseAdaptor, C4. connect},s1, , >

<Sl,g1 .releaseAdaptor, Sé o >
<82, - {! C4.connect},s2, ke
<s3, -{! C4.connec}};s3, , >
<83, C4.connect,S0, , >

Note that, when during the runtime, the state of P15 changes
from SO to S1 by means of the action ! Cl.releaseAdaptor performed
by C6 (i.e., Cr), w6 informs w5 and w7 of the new state of P_LTS by
means of the “UNBLOCK” message of code line 28 of its Ask proce-
dure (see Section 5.2). Consequently w5 and w7 know that in such
a state their supervised components cannot perform C4.connect
since the entries <s1, C4.connect, , , > are not present in
the table of updating and allowed actions of w5 and of w7. The
components supervised by w5 and w7 can perform C4.connect only
when the state S3 of Pirs has been reached hence reflecting the
specified desired behavior.

Once the tables of last chance states and of updating and al-
lowed actions are filled, the interactions among local wrappers
can start by means of the procedures Ask and Ack described in Sec-
tion 5.2.

The actual code shown below is a fragment of the actual code
that SyntHesis has derived for the local wrapper w5 that supervises
the component C5 (i.e., the ministry client Cm). As it is shown,
SynTHESIS uses Aspect] in order to write the code of a local wrapper.

In other words, each local wrapper is implemented as an aspect by
using Aspect]. Beyond coding both the tables of last chance states
and of updating and allowed actions, and the procedures Ask and
Ack (that are not shown in the code fragment) SyntHEsis derives,
for each possible component action, an Aspect] pointcut. For each
pointcut, if it is the case that the pointcut is associated to an action
that either can lead to a deadlock (e.g., setAdaptor performed
through instances of C1 and C3) or might violate the specified de-
sired behavior (e.g., connect performed through an instance of C4),
then both a before and an after advice is generated. Otherwise, only
an after advice is generated. In the former case, in order to estab-
lish whether the component can perform a method call or not, be-
fore that call is performed (before advice), the local wrapper calls
the procedure AuthorizationRequest(). After the method call has
been performed (after advice), the local wrapper updates its cur-
rent state according to the LTS of the component it supervises
(i.e., the current state of a local wrapper is used to trace the current
state of the supervised component). In the latter case, the current
state is updated and the procedure Ack is called in order to allow
a component, different from the supervised one, to possibly per-
form the method call associated to the pointcut defined for the
after advice.

Procedure AuthorizationRequest() checks, through the last
chance state table of the local wrapper, if the method call associ-
ated to the current pointcut can lead to forbidden states. If it is
(as in the case of c30bj.setAdaptor(...) and c10bj.setAdaptor(...)
associated to the pointcut b() and c(), respectively), the procedure
Ask is performed in order to ask the permission to the other com-
ponent adaptors before performing that method call. If not (as in
the case of c40bj.connect(. ..) associated to the pointcut a()), the lo-
cal wrapper allows its supervised component to perform the meth-
od call without asking anything. In this case, AuthorizationRequest()
also checks (through the updating and allowed actions table of the
local wrapper) whether that method call makes P s change its
state or not. If it does (as in the case of c40bj.connect(. . .)), Authori-
zationRequest() sends a block message to all the adaptors whose
supervised component cannot move (with respect to Piys) and an
unblock message to all the ones whose supervised component
was blocked, but now can move because of the new state of Pjs.
When, for example, w5 asked, to some other local wrapper wx,
for the permission of performing a call to setAdaptor(...), wx an-
swers w5 whenever wx is or will reach a state different from the
one for which wx has been enquired by w5. Otherwise, wx does
not answer hence attempting to block wb5.

Procedure Ack is performed to suitably handle some method calls
by other components that, performing such method calls, can lead to
forbidden states. For example, component C7 can lead to a deadlock
when it calls the method setX500name(. ..) whereas C5 cannot. For
instance, when C7 calls the method setX500name(. . .) through an in-
stance of either C2 or C4 and, hence, w7 asks for the permission to call
such a method, w5 gives (through procedure Ack) the permission to
it whenever its state does not participate in a forbidden one. Other-
wise, it attempts to block w7.

9. Related work

The approach for automatically assembling software compo-
nents and adapting their externally observable interactions pre-
sented in this paper is related to a number of other approaches
that have been considered in the literature.

In this section, we firstly discuss valuable work in the literature
that, even though not strictly related to our work, provided us with
useful background notions concerning the nature and the compo-
sition of software components; then, we relate with our previous
works and other works closest to our approach.

In Arbab (2005a,b) and Arbab et al. (2006a,b) (and references
therein), focussing on what components are and how they are to

be constructed, the authors provide

M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236

2229

and subtleties concerning concepts such as component composi-
tion, behavior, interaction, coordination and glue code. The authors

the reader with useful notions introduce a foundation model, called Abstract Behavior Type

V74
// LOCAL WRAPPER FOR THE MINISTRY CERTIFICATE CLIENT "Cm" (i.e., C5 within

// SYNTHESIS) . It is an Aspect) class whose aim is to define a point cut for the
// method calls '‘connect’’ on C4, '‘releaseWrapper’’ on C3, ' ‘releaseX500° on C4,

// " ‘setX500name '’ on C4, ‘‘setlrapper’’ on C3, ' ‘setX500name '’ on C2, and

// " ‘setWrapper’’ on Cl performed by Cm. It also forces Cm to ask the other
// components for the authorization to perform such method calls. Morevoer, it
// is also responsible to reflect the LTS of Cm by accordingly updating the
// value of the static member ‘stateW5''.

V24

package LocalWrapper5; import java .net.*; import java.io .*;

public aspect LocalWrapper5 {
// Current state
public static int stateW5 = O ;

VZ
// Pointcut for the method call ‘‘connect’’ on C4. It defines an advice of
// type ‘‘before’’: AuthorizationRequest() will be performed before the

// execution of the method call '‘connect’’ on C4 (i.e.. it is a
// synchronization message)
V4

pointcut a() : call(* c40bj .connect(..)) ;
before() : a
Author izationRequest() ;

}

Y
// Advice of type ‘‘after’’: after method call ‘‘connect’’ on C4 has been
// performed, the current state is updated according to the LTS of Cm
// (i.e., the LTS of C5)
VZ
after() returning : a(){
if (stateW5==0) {stateW5 = 3;}
b

V74

// Pointcut for the method call ‘‘setWrapper’’ on C3. It defines an advice of

// type '‘before'’: AuthorizationRequest() will be performed before the
// execution of the method call '‘setWrapper’’ on C3 (i.e., it is a
// synchronization message)
VZ
pointcut b() : call(* c30bj .setWrapper(..)) :
before() : b() {
AuthorizationRequest() :
3

Y
// Advice of type '‘after’’: after method call ''setWrapper’’ on C3 has been
// performed, the current state is updated according to the LTS of Cm (i.e
// LTS of C5)
VZ
after() returning : b(){
if (stateW5==3) {stateW5 = 5;}
}

VZa

// Pointcut for the method call ‘‘setirapper’’ on Cl. It defines an advice of

// type ' ‘before’’: AuthorizationRequest() will be performed before the

// execution of the method call '‘setWrapper’’ on Cl (i.e., it is a
// synchronization message)
V4

pointcut c() : call(x clObj .setWrapper(..)) ;
before() : c() {
AuthorizationRequest() ;

}

Y
// Advice of type ‘‘after’’: after method call ‘’‘setWrapper’’ on Cl has been
// performed, the current state is updated according to the LTS of Cm
// (i.e., the LTS of C5)
Y
after() returning : c(){
if (stateW5==3) {stateW5 = 4:}

}

/7

// Pointcut for the method call ‘‘setX500Name . It defines an advice of type
// ‘after’’': after '‘setX500Name '’ has been performed, the current state is
// updated according to the LTS of Cm (i.e., the LTS of C5). It authorizes
// another component to perform the method call ' ‘setX500Name '’

V

pointcut d() : call(* c20bj .setX500Name (..)) ;
after() returning : d()

if (stateW5==4) {stateW5 = 3;}

Ack () ;
}

// The rest of the code is analogous to what has been done above
pointcut e () : call(x c40bj .setX500Name(..)) ;
after() returning : e() {
if (stateW5==5) {stateW5 = 3;}
Ack () ;
}

pointcut £() : call(x c40bj .releaseX500(..)) ;
after() returning : f()

if (stateW5==3) {stateW5 = 2;}

Ack () ;
}

pointcut g() : call(x c30bj .releaseWrapper(..)) ;
after() returning : g() {

if (stateW5==2) {stateW5 = 0;}

Ack () ;
}

2230 M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236

(ABT), for both components and their composition, as a higher-
level alternative to Abstract Data Type. In their view, component-
based systems consist of component instances and their
connectors, i.e., glue code, both of them modeled by ABTs. Clearly
distinguishing between coordination and computation, they
coined the term exogenous coordination for meaning coordination
from outside. As a concrete application of the ABT model, the
authors describe an exogenous coordination model and language,
called Reo. By considering common basic concepts that all exoge-
nous coordination protocols deal with, the Reo language enables
the compositional construction of complex coordinators model,
called connectors, from simpler ones (Arbab, 2002, 2003). We share
the idea that coordination languages offer a looser inter-compo-
nent semantic dependency with respect to the method invocation
semantics in object oriented paradigms. However, in our work, we
are interested in wrapping ready-to-use black-box components in
order to intercept their (externally observable) interaction and to
suppress certain messages for enforcing the correct/desired
interaction.

In Passerone et al. (2002), a game theoretic strategy is used for
checking whether incompatible component interfaces can be made
compatible by inserting a converter between them. This approach
is able to automatically synthesize the converter. Contrarily to
what we have presented in this paper, the synthesized converter
is a centralized adaptor.

Our research is also related to Yellin and Strom (1997) in the
area of protocol adaptor synthesis. The main idea is to modify
the interaction mechanisms that are used to glue components to-
gether so that compatibility is achieved. This is done by integrating
the interaction protocol into components. However, although the
work described in Yellin and Strom (1997) provides the founda-
tional base for protocol specification and protocol adapters by con-
sidering both syntactic incompatibilities and protocol mismatches,
the described approach does not address the automatic synthesis
of the adaptor. Note that also our approach can be easily extended
to address syntactic incompatibilities between component inter-
faces. We refer to Tivoli and Autili (2006) for details concerning
such an extension.

In another work by some of the authors (Inverardi et al.,
2005), it is showed how to generate a distributed adaptor by
exploiting an approach to the definition of distributed Intrusion
Detection Systems (IDS). Analogously to the approach described
in this paper, the distributed adaptor is derived by splitting a
pre-synthesized centralized one in a set of local wrappers (each
of them local to each component). The work in Inverardi et al.
(2005) represents a first attempt for distributing centralized
adaptors and it has two main disadvantages with respect to the
current approach: (a) the method requires a more complex (in
time and space) process for pre-synthesizing the centralized
adaptor. In fact, it does not simply model all the possible compo-
nent interactions (like our centralized glue adaptor), but it has to
model the component’ interactions that are deadlock-free and
that satisfies the specified desired behavior (Pirs). In that ap-
proach, in fact, the glue adaptor is generated and, afterwards, a
suitable synchronous product with P;rs is performed. This longer
process with respect to the current approach might also lead to a
final bigger centralized adaptor. (b) The adopted solution realize
distribution but not parallelism. The distributed local wrappers
realize, in fact, the strict distribution of the obtained centralized
adaptor by means of the pre-synthesizing step. This means that,
since the centralized adaptor cannot parallelize its contained
traces, the interactions of the local wrappers maintain this
behavior.

In Sen et al. (2004), the authors show how to monitor safety
properties locally specified (to each component). They observe
the system behavior simply raising a warning message when a vio-

lation of the specified property is detected. Our approach goes be-
yond simply detecting properties by also allowing their
enforcement. In Sen et al. (2004) the best thing that they can do
is to reason about the global state that each component is aware
of. Note that, such a global state might not be the actual current
one and, hence, the property could be considered guaranteed in
an “expired” state. Furthermore, they cannot automatically detect
deadlocks.

Despite the growing number of research works in the area of
component adaptation and assembly (see Canal et al., 2006; Brogi
et al., 2004; Passerone et al., 2002; Yellin and Strom, 1997 and ref-
erences therein), very few tools have been proposed to support
automatic synthesis of the actual composition code for a set of
black-box components. Moreover, many of them do not support
industrial component technologies and frameworks such as, e.g.,
Microsoft COM/DCOM, Enterprise Java Beans (EJB).

10. Conclusion and future work

In this paper we have presented an approach to automatically
assemble concurrent and distributed component-based systems
by synthesizing distributed adaptors. Our method extends our pre-
vious work described in Tivoli and Autili (2006) that permitted to
automatically synthesize centralized adaptors for component-
based systems.

The method described in this paper allows us to derive a distrib-
uted implementation of the centralized adaptor and, hence, it en-
hances scalability, fault-tolerance, efficiency, parallelism and
deployment.

We successfully validated the approach on a portion of an
industrial case study. We have also implemented it as an extension
of our SyntHEsis tool (Tivoli and Autili, 2006).

The state explosion phenomenon suffered by the centralized
glue adaptor A still remains an open problem. A is required to de-
tect the last chance nodes that are needed to automatically avoid
deadlocks. Indeed when the deadlocks can be solved in some
other ways (e.g., using timeouts) or Pirs ensures their avoidance,
generating A is not needed. Local wrappers may add some over-
head in terms of messages exchanged. In practical cases, where
usually many real parallel computations are allowed, the over-
head is negligible since additional communications are much less
then standard ones. As future work, whenever A is required, an
interesting research direction is to investigate the possibility of di-
rectly synthesizing the implementation of the distributed adaptor
without producing the model of the centralized one. Further val-
idation by means of other real-scale case studies would be
interesting.

Acknowledgements

Comments and suggestions of anonymous referees are grate-
fully acknowledged.

Appendix A. LTS-based formalism and formal definitions

In this appendix, we summarize the relevant definitions regard-
ing the specification language that is used (within our approach) to
specify the externally observable behavior of a component (hence
the trace-based semantics of its interaction) and of the AFA- and
CABA-systems’ behavior (see Section 3.1). This specification for-
malism uses LTSs (Keller, 1976).

Moreover, as introduced in Sections 3.2 and 4, a simple exten-
sion to the LTS syntax allow the SynTHEsis user to easily specify
the desired interaction behavior that is required for the realization
of the system'’s purposes.

M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236 2231

A.1. Labelled transition systems

Let Act be the universal set of observable actions, and
Act, = Act U {z}, where 7 denotes an internal action that is not obser-
vable to a component’s environment.

Definition 5 (LTS). An LTS L is a quadruple (S, T, D, so), where S is a
finite set of states, T C Act is a set of transition labels (i.e, actions)
called the alphabet of L, D C S x (TU{z}) xS is the transition
relation and sy € S is the initial state. L is finite if D is finite and L is
empty if D is empty. We will make use of the following notation:
g5he (g ah)eD.

An LTS L=(S, T, D, so) is non-deterministic if 3 (s, a,s),(s,a,s) €
D: s #5s', otherwise L is deterministic. It is worth mentioning that
the SyntHEsis tool deals with both deterministic and non-determin-
istic LTSs hence letting to the user the flexibility of modeling the
behavior of a component by means of either a deterministic or,
when needed, a non-deterministic LTS.

Definition 6 (Trace). Let L=(S, T, D,sp) be an LTS, t = pj+1 ptis2 - - - ttn
is a trace of L is iff there exists a sequence of statess;, ... ,s, € S such
that s,—“’%] Siv1 5., 1> 0, n>i. The empty trace is denoted by e.

The set of all traces of the LTS L starting from a state s; is de-
noted as Tr(L,s;).

Definition 7 (Normalized trace). Given a trace t =t pj1t ... T pin T
in Tr(L, s;), the normalized version of t is the trace t*= pj+1 ... un.
Note that, the normalized version of " is the empty trace e.

Given the set of traces Tr(L, s;) of an LTS L, we denote the corre-
sponding set of normalized traces as Tr(L, s;)".

A.2. Component behavior

By referring to Definition 7, the externally observable behavior
of a component can be defined as follows:

Definition 8 (Trace-based semantics of the component externally
observable behavior). The externally observable behavior of a com-
ponent modeled by means of an LTS C; = (S, T, D,sg) (modeling the
interaction of the component with its expected environment) is

Tl‘(ci,.'io)r

LTSs can be used to define finite state systems (Taubner, 1989).
For our purposes we assume that all systems we deal with are fi-
nite state systems. Note that, in our context, this is not a restriction.
We are dealing with black-box components (that can be seen as
discrete event reactive systems), each of them exporting through
its interface a finite number of “operations”. In our model, each
operation of a component interface can be seen as a point of inter-
action of the component with its expected environment (e.g., an
observable action in an automaton). If we would model all the pos-
sible externally observable component interactions with a “classi-
cal” automaton instead of an LTS, we would also have accepting
states. Indeed, for our purposes, what matters about a particular
component interaction is not whether it drives the automaton in
an accepting state (since we cannot detect this due to the black-
box nature of the component) but whether the automaton is able
to perform the corresponding sequence of actions interactively.
Thus, we should consider an automaton in which every state is
an accepting state (Milner, 1989; Hopcroft and Ullman, 1979)
(i.e., an LTS). A consequence is that if an automaton accepts a par-
ticular component interaction seen as a sequence of component
interface operation invocations (i.e., a trace of actions in our mod-
el), then it also accepts any initial part of that interaction/sequence.
In other words, due to the finiteness of the set of component inter-
face operations, although all the possible component interactions

can be infinite we can always finitely represent them since the lan-
guage built over the component interface operations (i.e., the mod-
el of the component interaction behavior) is prefix-closed
(Hopcroft and Ullman, 1979). Prefix-closed languages are gener-
ated by prefix-grammars that describe exactly all regular lan-
guages. It is well known that regular languages are always
accepted by finite-state automata. Furthermore, note that dealing
with time is out of the scope of this work, i.e., we do not consider
real-time systems (although they might be still modeled using fi-
nite-state models). We refer to Tivoli et al. (2007) for a work-in-
progress version of SyntHesis dealing with real-time systems. Thus,
due to our component interaction model and to the fact that we
deal with black-box components, it is sufficient to consider finite
state systems for dealing with all the systems we are interested in.

In order to model component-based systems, LTSs can be com-
bined using the LTS parallel composition operator. In the literature,
several variants of the operator have been defined. The one used
here (see Definition 9) has an interleaving semantics. That is, if «
is an observable action (i.e., o« # t) of an LTS L;, then « is executed
simultaneously with the complementary action @ of an LTS L; (with
i # j) producing an internal action ¢ at the level of the parallel com-
position. Synchronization of actions is thus determined by the
alphabets of the component LTSs. An action of an LTS L; for which
no complementary action exists in an LTS L; (with i # j), is executed
only by L; and will not be synchronized, hence, producing the same
action f at the level of the parallel composition (these actions are
called independent actions). Analogously, the internal action r is
executed by exactly one component LTS at a time. By referring to
the notation used by the SyntHEsis tool (see for instance Section
4), the receive message ?C1.a is a complementary action of the
send message !C1.a.

A.3. Component LTSs parallel composition

In the following we formally define the concept of parallel com-
position of component LTSs. Firstly, for the sake of simplicity, we
give the formal definition by just considering two LTSs, then we
give the same definition by considering the general case of two
or more LTSs.

Definition 9 (Parallel composition (two LTSs)). Let Ly = (Sq,
T1,D1,8), and Ly = (S2, T, D>, s3) be two LTSs, their parallel com-
position is the LTS Lq|L, = (S, T, D, o), where

States: S C S; x S,

Root: so = (s},s2)

Labels: T=T, UT, U {t}

Synchronization: ((51,52),7,(5),85)) € D<= Fa,a € T{ UT, :

(S1,2,8)) € D1 A (S2,a,8,) € Dy Aozt

o Interleaving: ((s1,52),5,(5},52)) e D<= 3peTy: (5,5,5)) €
D A (B¢ T,V B =) (the rule Interleaving has a symmetric ver-
sion that is not given since its definition is trivial)

e Reachability: Vs € S, 3t € Tr(L4|L,,S0) leading to s.

In practice, the parallel composition operator “|” combines the
behaviors of two LTSs by synchronizing their shared/common ac-
tions and interleaving their non-shared and internal actions. Note
that SYNTHESIS takes as input LTSs that do not contains internal ac-
tions. These actions are considered only for parallel composition
purposes.

Moreover, the isolated part of the parallel composition that is
not reachable from the initial state is ignored, as it has no semantic
significance.

Indeed, the parallel composition operator of two LTSs cannot be
used to incrementally built the parallel composition of more than

2232 M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236

two LTSs since it is not associative, e.g., (L1|L;)| L3 is not necessarily
equal to Ly|(L|L3). Thus, for the general case of more than two
LTSs, the following definition must be used. That is, Definition 10
is used, in general, for defining the behavior of an AFA- and
CABA-system.

Definition 10 (Parallel composition (general case)). Let L; =
(S1,T1,D1,88), .. Lo = (Sn,Tn,Dn,s3) be n LTSs, their parallel
composition is the LTS L4| ... |L,= (S, T, D, So), where

States: S C Sy x ... xS,

Root: so = (s, ...,sp)

Labels: T = |, T; U {z}

Synchronization:

((S1,---+Sn)s 7, (Sh,-..,8Sp)) €D <= Fi,je {1,...,n} :i#],a,

&€ Ui Te: A(Si,,8) € Di A (55,8, 57) €

Dina#t Ak € {1,...,n} : k##i,j — 5}, = S

o Interleaving: ((s1,...,S4),8,(S},...,Sp)) D<= 3ie {1,...,n},
peTi:(sip,8)eDine{l,...,n},
J#Ai =8 =5 A (B¢ Urcr i Tk V B = 1))

e Reachability: Vs € S, 3t € Tr(L4] . .. |Ln,S0) leading to s.

A.4. AFA system

By exploiting Definitions 10,11 follows:

Definition 11 (AFA-system behavior). The behavior of an AFA-
system (see Section 3.1), composed by a set of n components
(synchronizing on common actions) that are modeled by the LTSs
Cy = (51,T1,D1,88), .-, Ca = (Sn, T, D, $B), is

Tr((Cil -+ Cn). (Sgs - - - +50))
Its externally observable behavior is

Tr((Cil .- - |Cn)s (Sos---+55))°
A.5. CABA system

Definition 12 (Relabeling function). Let L =(S, T, D, so) be an LTS,
L[w;] is the LTS L relabeled by the relabeling function w; (for some
ie /) and L{w;] = (S, T[w;], D[wj], So), where

o Tiwi] = (oifzeT) | N
o D[wi]={(s,0i,$)|a# 7,(s,0,5) € DYU{(V, 7, V)| (v, 7, V') € D}

Definition 13 (Glue adaptor LTS). Let C; = (S1,T1,D1,8}), ...,
Cn = (S4,Tn, Dy, s%) be n component LTSs, their glue adaptor LTS is
the LTS Agye = (S, T, D,sg‘“), where

States: S C Sy x ... x5,

Root: s&" = (s},...,sp)

Labels: T = (Ji_,Ti[wj]

Strictly 1/O behavior: ((s1,...,Sq), 20d, (Si,...,80)), ((S],---,Sh),
loj, (sY,...,8p) € D<= 3i,je{1,...,n} : iF# A (S, o, S}) € Din

(s, 7o, 87) € Dy AVK, he {1,...,n} t k#I Ah#] — S} = Sk A = s}

« Reachability: Vs €S, 3t € Tr(L,s5") leading to s.

It is worth noticing that the strictly I/O behavior of the glue adap-
tor LTS in Definition 13 models the strictly sequential nature of the
adaptor, ie., each received message is forwarded strictly to the
right component.

By exploiting Definition 13 it is straightforward to define the
behavior of a CABA-system (see Section 3.1) for a set of n compo-
nents assembled by a glue adaptor.

Definition 14 (CABA-system behavior). Given the LTSs C; = (Sy,
T1,D1,50), ..., Ca = (Sn,Tn,Dn,s3) modeling the behavior of the n
components, and given the LTS Agye = (S, T,D,sglue) modeling the
strictly sequential behavior of the glue adaptor, the behavior of the
CABA-system is modeled by

Tr((Ca[wi]l - - |CalWallAgue) (S5, - - -, 56. 55)

Its externally observable behavior is

glue

Tr((C1[wi]] .- . |Ca[WnllAgiue)s (S5, - - - » Smy S5))°

A.6. Deadlock

We will refer to sink states of an LTS as deadlock states. A dead-
lock state models the fact that a deadlock has occurred in the asso-
ciated component/system. An LTS is deadlock-free if it does not
have deadlock states.

Definition 15 (Deadlock state). Let L= (S, T, D, so) be an LTS, s; € S is
a deadlock state of L iff Zs; € S such that s; > s;. In other words, a
deadlock state is a sink state.

Definition 16 (Forbidden trace and forbidden state). Let
L=(S,T,D,so) be an LTS and let t= uj1 w2 ... un be a trace in

Us e sTr(L, s) such that s; i) Siv1... s, then t is a forbidden trace

",
of L iff s, is a deadlock state and Vicj<p, ﬂsj’Js’.

j+1
His1 7t g ASi#S;, . All the states s;, ... s, € S are forbidden states.

We denote by FT; the set of all forbidden traces of an LTS L and

by FS; the set of all forbidden states of L. Note that, FS; is the set
of all deadlock states and of all the states within forbidden traces
necessarily leading to deadlock states; a forbidden trace is a trace
that starts at a node which has no transitions that can avoid a for-
bidden state and thus necessarily ends in a deadlock state (i.e., a
sink).
Definition 17 (Last chance state). Let L= (S, T, D, so) be an LTS and
let ft = ujr1pis2 ... un be a forbidden trace in FT, such that s; Hed
Sit1 s, if there exists a trace =g fir1, Mis2s ..o fin €
((Us < sTr(L, S))\FTy) such that s;_; 25;"% s;,1... 2 s, then s;_; is a
last chance state for ft.

We denote by LC; the set of all last chance states of the
LTS L.

A.7. Desired behavior

A desired behavior LTS is defined over a specific set of actions
that are semantically equivalent to component actions. Let
Cy, ..., G, be the components given as input to our method, and
let Ciwi] = (S1,Ti[w1],D1{w1],S}), ..., Ca[Wn] = (S, Tn[Wa], Dn[Wn),
s?) be the corresponding relabeled LTSs (see Definition 12 in
Appendix A.5). Let U = (Ji_, T;[w;] be the universal set of component
actions. U is ranged over by «, oq,02, Unlike actions in a compo-
nent LTS, each action in U has associated an identifier specifying
which component (in the CFA-system) performs that action. For in-
stance, C3.method1_1 models the action C3.methodl performed
by the component C1. In the following we formally define the syn-
tax of the action label of the desired behavior LTS. The syntax is for-
malized by means of a grammar that can be used to generate
action labels for a desired behavior LTS.

Definition 18 (Desired behavior actions syntax). The universal set
DbActy of desired behavior actions over U, is the set of action labels
generated by the following grammar:

M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236 2233

| := o|Neg(«)|?7true_#|{Neg(ox), ..., Neg(am) e, . . ., o]

where Neg is a relabeling function over U such that

Neg(x) =7 —a; if € U and o = ?q;
Neg(x) = —a; if « € U and o = a;

The syntax of the action labels in DbActy, is similar to the syntax
of the action labels in a relabeled component LTS except for two
kinds of actions: (i) a universal action (i.e., ?true_#) which models
any possible component action (i.e., any action in U) and (ii) a neg-
ative action which models any possible component action except
for the negative action itself; for instance, the negative action -
C¢3.method1_1 models all the actions in U different from C3.meth-
od1_1. Moreover, action labels in DbActy can be a simple formula
obtained as logical “AND” or “OR” composition of action labels.
The “AND” operator can be applied only to negative actions and
it is denoted by means of the notation {...}. The “OR” operator
can be applied only to regular actions (i.e., component actions)
and, for it, the notation [...] is used (see Fig. 4). The semantics of
action labels in DbActy, is defined as follows, by means of a certain
notion of semantic equivalence between regular actions and de-
sired behavior actions. Note that, component actions in a relabeled
component LTS are a particular case of desired behavior actions
(i.e., they are regular actions « of Definition 18).

Definition 19 (Desired behavior actions semantics). Let « € U and
I € DbActy, we say that o shares the meaning of | or, simply, «
matches | (denoted by o = yl) if there exists a binary relation =
relating « and [(i.e., («,l) € = y with 2y C U x DbActy) such that

o1 Ul &= 01 = 002

oy = yNeg(op) & a1 Z y %2

o y?true_#

a2y {Neg(a1),. .., Neg(om)} <= A (ey)
acylog, ..., o] <= Vi, (e22yo)

1R 1R

A desired behavior LTS (with respect to an universal set U of
relabeled component LTS actions) is defined over a set of transition
labels that is a sub-set of DbActy.

Definition 20 (Desired behavior LTS). Let C, ...,C, be n component
LTS, let Ci[wi]=(Sy, Ta[w1], Di[w1l, 88), ..., Galwal = (Sn Tulwa],
Dy[wy], s§) be their corresponding relabeled LTSs, and let
U = UL T;wi]; a desired behavior LTS over DbActy for Cy,...,Cy is
a well-formed and, possibly, non-deterministic LTS Pirs=(Sp, Tp,
Dp, po) Where Sp is the set of states, Tp is the set of transitions labels
such that Tp C DbActy, Dp is the set of transitions, and pg is the
initial state.

A.8. Trace containment check

Our method checks whether enforcing a desired behavior is
possible or not through a trace containment check between the de-
sired behavior LTS and the adaptor LTS where the deadlocking
interactions have been removed.

Definition 21 (Trace containment under =z). Let L, = (51,T1,
Dy,s}) and Ly = (S, T2, D2, s3) be two LTSs, and let T;,T>» C DbActy
for some universal set of observable actions U; we say that
Tr(Ly,s})" is contained under =y in Tr(ly,s3)" (written
Tr(Ly,s8)" €~ Tr(Ly,s3)") if and only if VvteTr(ly,s))":3

t' € Tr(Ly,s3)° : teyt’.

By abusing notation, we extend the action complement operator
to sets of transition labels, traces, and set of traces as follows: let

T C Act, be a set of transition labels, then T = {aja e T}U

{t|t€T}; let t=p;... pm be a trace, then t = pB;...B,; for the
empty trace ¢ we consider ¢ =¢; let L=(S, T, D,so) be an LTS and
let Tr(L) = {t|t € (T U {e})}, then Tr(L) = {£|t € Tr(L)}.

Given a desired behavior LTS P = (Sp, Tp, Dp, s}) and the adaptor
LTS Kqr=(S, T, D,s) where the deadlocking traces have been re-
moved, this check is used to verify whether Tr(P,s})" C-,
Tr(Kg,s)" or not. This check is implemented by a suitable notion
of refinement (Milner, 1989). Refinement, in general, formalizes
the relation between two LTSs at different level of abstractions.
Refinement is usually defined as a variant of simulation. In this pa-
per, we use a suitable notion of strong simulation (Milner, 1989) to
check a refinement relation between two LTSs with observable ac-
tions over DbActy (i.e., P and Kyy). To do this, we use the matching
operator “ = ;" as action comparison operator of the simulation.

Definition 22 (Simulation under =). Let L; = (S1,T1,D1,s}) and
Ly = (S3,T2,D5,53) be two LTSs, and let T;,T, C DbActy for some
universal set of observable actions U; a relation <, CS; xS, is a
strong simulation under =, or simulation under =, for short, where
s<~,v if and only if vs'eS;:vleT; shy = ave S, v v
Iyl AS'<,V'. We say L, simulates under 2 Ly, written L; <+, Ly,
if and only if sj<~,s3.

Theorem 1 (a trivial variant of the analogous theorem described in
Milner (1989)). Let L; and L, be LTSs where Li<~,L,, then
Tr(Li,s§)" C~, Tr(La,s3)".

=y

Appendix B. Happened-before relation and partial ordering

In this appendix, we briefly recall basic notions related to dis-
tributed systems and recall the well know time-stamp method that
we use within the SynTHEsis approach.

Without loss of generality, we assume that the components to
be assembled are uniquely identified and assigned to different pro-
cessors (residing in different interconnected machines). Note that,
this assumption can be maintained to model abstract parallelism
when more than one component is assigned to a single processor.
For the sake of clarity, in this paper we also assume that each com-
ponent is single-threaded and, hence, all its send and receive
events can be totally ordered to constitute a set of traces (see
Appendix A). Note that, this is not a restriction since a multi-
threaded component can always be modeled as a set of single-
threaded (sub-)components simultaneously executed.'®

Considering synchronization on common actions (send events
and corresponding receive events), interaction among components
is modeled by interleaving of traces (see Section 4 for a simple
example and the Definitions 9, 10 and 13 in Appendix A). This
means merging two or more traces such that the independent
events (i.e., not common) from different traces may occur in any
order in the resulting trace, while the events within the same
traces retain their order. A trace resulting from this merge is usu-
ally called a linearization (Ben-Ari (1990)).

It is worth noting that, in such a concurrent and distributed
context, we cannot assume either a single physical clock or a set
of perfectly synchronized ones in order to determine whether an
event a occurs before an event b or vice versa. We then need to de-
fine a relationship among the system events by abstracting from
both the absolute speed of each processor and the absolute time.
In this way, we ignore any absolute time scale and assume each
event to be executed in a time unit.!! For example, the sequence
of events depicted in Fig. 20a can have different execution times

10 The new version of SyntHesis allows the user to also model multi-threaded
components.

1 This abstraction is acceptable since we are not interested to real-time systems for
which the absolute time is relevant.

2234 M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236

based on different processor, but we will model it as in Fig. 20b
where each event occurs in a prefixed time unit.

By taking into account the law of causality (Lamport, 1978) (i.e.,
a message can be received only after it has been sent), it is possible
to define the happened-before relation (denoted by —) on a set of
events as follows:

Definition 23 (Happened-before relation). Let E; be the set of
events of a component C; and let E=J.,E; be the set of all
possible system events, then the happened-before relation
— C E x E on the set of events of a system is the smallest relation
satisfying the following three conditions:

(1) if e; and e, are events of the same component and e; is exe-
cuted before e,, then e; — ey;

(2) if e; is the event corresponding to the sending of a message
m by a component and e, is the event corresponding to the
receiving of m by another component, then e; — es;

(3) ife; - e; and e, — e3 then e — e3.

For each pair of distinct events eq,e; € E, if e; does not occur
before e, and e, does not occur before e; we will write e; = e,
and e, - e;. In this case we say that a and b are concurrently exe-
cuted. Obviously, e; - e; for each e; € E since e; cannot occur before
itself.

We refer to Lamport (1978) for a detailed discussion about
the concepts of concurrency and happened-before relation. Note
that, the happened-before relation is only a partial ordering of
the events in distributed systems. In particular, when modeling
synchronous communication, we can consider send and receive
events of the same message to occur simultaneously. Thus, in
this case, we might restrict the partial order to only send-
events.

B.1. Time-stamps and total ordering

In this section, we briefly describe the well known time-stamp
method (Lamport, 1978) that we use to implement the hap-
pened-before relation within the algorithms described in Section
5. Whereas the events onto a same component can be totally or-
dered, the relation with the events of different components is not
always well defined. By the time-stamp method it is possible to de-
fine a global order among the whole events (send/receive) ex-
changed through the assembled system for each component. In
other words, each component can establish a total order among
its generated events and the events received from other
components.

The idea is to associate a time-stamp to each event. This is just a
number that each sending component associates to its messages.
Locally, time-stamps are sequentially generated, one for each
event. Whenever a receive event e’ occurs at a component ¢, such
a component is able to determine a local order among its own
events and e'. If ¢ was intended to send a message e with a time-
stamp lower than the one associated with e, then e is processed
before ¢/, i.e., e = €. Moreover, in order to try to synchronize with
the sending component, ¢ will use the received time-stamp plus
one as next time-stamp, i.e., the next message that c wants to send
will be associated with the updated time-stamp. On the other
hand, if the time-stamp associated to e is bigger than the received
one, ¢ considers e’ - e. Finally, if the time-stamp associated with e
is equal to the time-stamp associated with ¢’, then there is concur-
rency. In this case, in order to avoid any ambiguity, an order among
components can be a priori fixed. If ¢’ was sent by a component
¢ < cin the fixed order, than e’ » e, otherwise e - €', hence obtain-
ing a total order among events. The time-stamp method is well de-

e e, e e
a ! 23 4
T T T 1
Time
b | © % % %
T T T 1 o
Time

Fig. 20. Time unit and sequence of events.

scribed in Lamport (1978). We use it in what follows since it is a
lightweight and easy way to validate mutual exclusion, freedom
from deadlock and starvation, and it allows one to state other use-
ful and crucial properties for distributed systems (e.g., minimum
overhead in performing synchronizing communication).

B.2. Time-stamps implementation

While exchanging messages, when needed, the standard time-
stamp method is used in our approach in order to avoid problems
of synchronization. In this way, an ordering among dependent
messages is established and starvation problems are addressed.
Such a method establishes a total order at each wrapper among
the sent and received events of the corresponding component.
For this purpose we also need an ordering among components.
Such an a priori fixed order solves concurrency problems arising
when two events with associated the same time-stamp must be
compared. Whenever a local wrapper of a component C, receives
a message with associated a time-stamp ts from the wrapper of a
component C,, it makes use of the following simple procedure in
order to update the current time-stamp TS that it associates to
the events generated by C,.

The following procedure is used in our implementations in or-
der to update the time-stamp of a component.

Procedure (UpTS(component: C,, timestamp: ts;)).

1: if (TS=ts AND y <x) OR TS < ts then
2: IS:=ts+1;
3: end if

We now provide the pseudo-code related to procedures Ask and
Ack in which the use of the time-stamps and of Procedure UpTS has
been made explicit.

Procedure (Ask(action: o;)).

Procedure.

1: Let C, be the current component that would perform action «
and let S, be its current state and p be the current state of
Pyrs;

Let (t;)7* be the ith tuple contained in the table W{* and
(t)Y4[j] be its jth element;

: flag_forbidden := 0;

2 if3i|(t) Y1) == p&&(t)) 2] == « then
if « appears in some pair of W¢ then

for every entry (S,«) € W do
i=1;
TS ++;
while no “ACK, o,ts” received &&i < n do
Let S= (S¢,,...,Sc,); W, asks to local wrapper W¢,
if it is in or approaching'? the state Sc, with associated TS;

e U A

12 ¢ is performing its Ask procedure with respect to an action that leads C; to Se,-

M. Autili et al./ The Journal of Systems and Software 81 (2008) 2210-2236 2235

10:
i++;
11: end while
12: if i > n then
13: WAIT for an “ACK, o, ts” message of one enquired
component C;
14: end if
15: UpTS(C,, ts);
16: ifi>ndo
17: i:=n;
18: end if
19: forj:=1toido
20: send “UNBLOCK, o, TS” to W¢,;
21: end for
22: end for
23: end if
24: TS ++
25: if (t)Y[1] = (t)Y*[3] then
26: for each component C; € t)Y[4] do
27: send “BLOCK, TS” to WCJ;
28: end for
29: perform action «;
30: for each component C; € (t;)*[5] do
31: send “UNBLOCK, (t;);"[3], TS” to W¢;;
32: end for
33: else
34: perform action «;
35: end if
36: end if

[Ack(last chance state: S; action: «; timestamp: ts1;)]

1: Let W¢, be the local wrapper (performing this Ack) that was
enquired with respect to the state S and the action « that C,
would perform.

2: UpTS(C,, ts1);

3: if G, is not in S&&W¢, didn’t ask for permission to get in S
then

4: send “ACK, o, TS” to W, that allows C, to perform the

action o;

if C, would reach S with the next hop then
WAIT for “UNBLOCK, o, ts2” from Wc,;
end if
else
once G, is not in S send “ACK, «, TS” to W¢, that allows C to
perform the action «;

10: if no “UNBLOCK, «, ts2” from Wc, has been received then

11: WAIT for it;

12: end if

13: UpTS(Cy, ts2);

14: end if

WD Wm

References

Arbab, F., 2002. A channel-based coordination model for component composition.
Technical Report SEN-R0203, Centrum voor Wiskunde en Informatica, Kruislaan
413, 1098 S] Amsterdam, The Netherlands, February.

Arbab, F., 2003. Reo: a channel-based coordination model for component
composition. Mathematical Structures in Computer Science 14 (3), 1-
38.

Arbab, F., 2005. Composition by Interaction. Inaugural Lecture, Leiden University,
October.

Arbab, F., 2005b. Abstract behavior types: a foundation model for components and
their composition. Science of Computer Programming 55, 3-52.

Arbab, F., 2006b. A behavioral model for composition of software components. RSTI
- L'objet, Coordination and Adaptation Techniques 12 (1), 33-76.

Arbab, F., Baier, C. Sirjani, M., Rutten,]J.M.M., 2006a. Modeling component
connectors in reo by constraint automata. Science of Computer Programming
61 (2), 75-113.

Autili, M., Inverardi, P., Tivoli, M., Garlan, D., 2004. Synthesis of ‘correct’ adaptors for
protocol enhancement in component-based systems. In: Proceedings of
SAVCBS'04 at FSE, pp. 79-86.

Autili, M., Flammini, M., Inverardi, P., Navarra A., Tivoli, M., 2006. Synthesis of
concurrent and distributed adaptors for component-based systems. In:
Proceedings of the European Workshop on Software Architecture (EWSA).
LNCS, vol. 4344, Springer-Verlag, Berlin/Heidelberg. pp. 17-32.

Autili, M., Inverardi, P., Navarra, A. Tivoli, M., 2007. SYNTHESIS: a tool for
automatically assembling correct and distributed component-based systems.
In: Proceedings of the 29th International Conference on Software Engineering
(ICSE’07), Minneapolis, MN, USA, pp. 784-787.

Becker, S., Overhage, S. Reussner, R., 2004. Classifying software component
interoperability errors to support component adaption. In: Crnkovic, I,
Stafford, J.A., Schmidt, HW., Wallnau, K.C. (Eds.), Component-based Software
Engineering, Proceedings of the 7th International Symposium, CBSE 2004,
Edinburgh, UK, May 24-25, Lecture Notes in Computer Science, vol. 3054,
Springer, pp. 68-83.

Becker, S., Brogi, A., Gorton, I, Overhage, S. Romanovsky, A., Tivoli, M. 2006.,
Towards an engineering approach to component adaptation. Chapter in
Dagstuhl Seminar 04511: Architecting Systems with Trustworthy
Components. LNCS, vol. 3938, Springer-Verlang, Berlin/Heidelberg. pp. 193-
215.

Ben-Ari, M., 1990. Principles of Concurrent and Distributed Programming. Prentice
Hall.

Brand, D., Zafiropulo, P., 1983. On communicating finite-state machines. Journal of
the ACM 30 (2).

Brandin, B.A., Wonham, W.M., 1994. Supervisory control of timed discrete-event
systems. IEEE Transactions on Automatic Control 39 (2).

Brogi, A., Canal, C., Pimentel, E., 2004. Behavioral types and component adaptation.
In: Proceedings of the 10th International Conference on Algebraic Methodology
And Software Technology (AMAST2004).

Canal, C., Poizat, P., Salalin, G., 2006. Synchronizing behavioral mismatch in
software composition. In: Proceedings of the International Conference on
Formal Methods for Open Object-based Distributed Systems. LNCS, vol. 4037.

Compare, D., Inverardi, P., Wolf, A.L,, 1999. Uncovering architectural mismatch in
component behavior. Science of Computer Programming (33), 101-131.

Crnkovic, 1., Larsson, M., 2002. Building Reliable Component-based Software
Systems. Artech House Boston, London.

European Commission 6th Framework Program - 2nd Call Galileo Joint
Undertaking: Cultural Heritage Space Identification System (CUSPIS). <http://
www.cuspis-project.info>.

Hopcroft, ., Ullman, J., 1979. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley.

Horwich, P., 1990. Wittgenstein and kripke on the nature of meaning. Mind and
Language 5, 105-121.

Inverardi, P., Tivoli, M., 2003. Software architecture for correct components
assembly. In: Formal Methods for the Design of Computer, Communication
and Software Systems: Software Architecture. LNCS, vol. 2804. Springer.

Inverardi, P., Mostarda, L., Tivoli, M., Autili, M., 2005. Synthesis of correct and
distributed adaptors for component-based systems: an automatic approach. In:
Proceedings of 20th IEEE/ACM International Conference on Automated Software
Engineering (ASE)- Long Beach, CA, USA.

ITU-T: The X500 naming service: ISO/IEC 9594-1. <http://www.itu.int/home/
index.html>.

ITU Telecommunication Standardisation Sector, 1996. ITU-T Reccomendation Z.120.
Message Sequence Charts. (MSC'96), Geneva.

Keller, R., 1976. Formal verification of parallel programs. Communications of the
ACM 19 (7), 371-384.

Lamport, L., 1978. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21 (7), 558-565.

Milner, R., 1989. Communication and Concurrency. Prentice Hall, New York.

Nicola, R.D., Vaandrager, F., 1995. Three logics for branching bisimulation. Journal of
the ACM 42 (2), 458487.

Passerone, R., de Alfaro, L., Heinzinger, T., Sangiovanni-Vincentelli, A.L., 2002.
Convertibility verification and converter synthesis: two faces of the same coin.
In: Proceedings of the International Conference on Computer Aided Design
(ICCAD). San Jose, CA, USA.

Ramadge, P.J., Wonham, W.M., 1987. Supervisory control of a class of discrete event
processes. SIAM Journal of Control and Optimization 25 (1).

Schmidt, H.W., Reussner, R.H., 2002. Generating adapters for concurrent component
protocol synchronisation. In: Proceedings of the Fifth IFIP International
Conference on Formal Methods for Open Object-based Distributed Systems.

Sen, K., Vardhan, A, Agha, G., Rosu, G., 2004. Efficient decentralized monitoring of
safety in distributed systems. In: Proceedings of the International Conference on
Software Engineering (ICSE), Edinburgh, UK.

Szyperski, C., 2004. Component Software: Beyond Object-oriented Programming.
Addison-Wesley.

Taubner, D., 1989. Finite representations of CCS and TCSP programs by automata
and petri nets. LNCS, vol. 369.

Tivoli, M., Autili, M., 2006. SYNTHESIS: a tool for synthesizing “correct” and
protocol-enhanced adaptors. RSTI L'Objet Journal 12 (1), 77-103.

Tivoli, M., Fradet, P., Girault, A., Goessler, G., 2007. Adaptor synthesis for real-time
components. In: Proceedings of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2007),
Member of ETAPS 2007, Braga, Portugal. LNCS, vol. 4424. Springer-Verlang,
Berlin/Heidelberg, ISBN 978-3-540-71208-4, pp. 185-200.

http://www.cuspis-project.info
http://www.cuspis-project.info
http://www.itu.int/home/index.html
http://www.itu.int/home/index.html

2236 M. Autili et al./The Journal of Systems and Software 81 (2008) 2210-2236

Uchitel, S., Kramer, J., Magee,]., 2004. Incremental elaboration of scenario-based
specifications and behavior models using implied scenarios. ACM Transactions
on Software Engineering and Methodology (TOSEM) 13 (1), 37-85.

Yakimovich, D., Travassos, G., Basili, V., 1999. A classification of software
components incompatibilities for COTS integration. Technical Report,
Software Engineering Laboratory Workshop, NASA/Goddard Space Flight
Center, Greenbelt, Maryland.

Yellin, D., Strom, R., 1997. Protocol specifications and component adaptors. ACM
Transactions on Programming Languages and Systems 19 (2), 292-333.

Zaremski, A., Wing, J., 1995. Signature matching: a tool for using software libraries.
ACM Transaction on Software Engineering and Methodology 4, 146-170.

Marco Autili received a first-class honors degree in Computer Science on April
2004, and a PhD in Computer Science on April 2008 from the University of L’Aquila,
Computer Science Department. Currently, he is a Research Assistant at the Com-
puter Science Department of the University of L'Aquila. In the field of Component
Based Software Engineering, his research interests include: Formal Methods to the
Automatic Adaptation and Composition of Software Components and their adap-
tation w.r.t. resource consumption in a given execution environment; Service Ori-
ented Architectures; Formal Requirements Specification.

Leonardo Mostarda received both his Computer Science degree and his Ph.D. from
the University of L’Aquila in 2002 and 2006, respectively. In 2006 he participated in
the CUSPIS European project at the University of L’Aquila as a post-doctoral

researcher. He started in 2007 as a research associate at Imperial College London.
His research interests include distributed systems, monitoring systems, and
security.

Alfredo Navarra received the master degree in Computer Science at the University
of L’Aquila in 2000, and the Ph.D. degree in Computer Science at the University of
Rome “La Sapienza” in 2004. From 2003 to 2004, he joint the MASCOTTE project
team at the INRIA institute of Sophia Antipolis as PhD student and PostDoc. In 2005,
he was PostDoc at the Computer Science Department at University of L’Aquila. In
2006, he joint the LaBRI at University of Bordeaux as PostDoc. In 2007, he joint the
Department of Electrical and Information Engineering at University of L’Aquila, and
he has become Assistant Professor at the Mathematics and Computer Science
Department at University of Perugia. His research interests include algorithms,
computational complexity, networking and distributed computing.

Massimo Tivoli received a first-class honors degree in Computer Science on 2001,
and a PhD in Computer Science on 2005 from the University of L'Aquila, Computer
Science Department. Currently, he is an Assistant Professor at the Computer Science
Department of the University of L’Aquila. His research interests include Formal
Methods to the Automatic Adaptation and Composition of Software Components,
Component Based Software Engineering, Software Architectures, and Service Ori-
ented Architectures.

	Synthesis of decentralized and concurrent adaptors for correctly assembling distributed component-based systems
	Introduction
	Background notions
	Problem description
	The reference architectural style
	Deadlock and desired behavior modeling

	Explanatory example
	Method description and formalization
	Method description
	Second step formalization
	Correctness
	Overhead

	The Synthesis tool
	Architecture of the Synthesis tool
	Case study
	The CUSPIS project
	The existing components and Synthesis at work

	Related work
	Conclusion and future work
	Acknowledgements
	LTS-based formalism and formal definitions
	Labelled transition systems
	Component behavior
	Component LTSs parallel composition
	AFA system
	CABA system
	Deadlock
	Desired behavior
	Trace containment check

	Happened-before relation and partial ordering
	Time-stamps and total ordering
	Time-stamps implementation

	References

