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Abstract

Intelligent Environments (IEs) are physical spaces where Information Tech-
nology (IT) and other pervasive computing technologies are combined in order to
achieve specific goals for the users and the environment. IEs have the goal of en-
riching user experience, increasing awareness of the environment. A number of
applications are currently being deployed in domains ranging from smart homes to
e-health and autonomous vehicles. Quite often IE support human activities, thus
essential requirements to be ensured are correctness, reliability, safety and secu-
rity. In this paper we present how a set of techniques and tools that have been
developed for the verification of software can be employed in the verification of IE
described by means of event-condition-action rules. More precisely, we reduce the
problem of verifying key properties of these rules to satisfiability and termination
problems that can be addressed using state-of-the-art Satisfiability Modulo Theory
(SMT) solvers and program analysers. Our approach has been implemented in a
tool called vIRONy. Our approach has been validated on a number of case studies
from the literature.

1 Introduction

IE are physical environments that combine together information, sensor and commu-
nication technologies into everyday physical objects, infrastructures, and the surround-
ings we live in. IE enhance everyday activities and allow new applications that were
not possible before. IE applications and scenarios include smart homes, e-healthcare,
e-learning, smart factories and autonomous vehicles [1]. IE are a type of reactive sys-
tems [2] which maintain a continuous interaction with the environment by reacting to
any stimulus (or event) that occurs in it.

The paradigm Event-Condition-Action (ECA) [3, 4] is a widely used approach to
program reactive systems. An ECA program contains rules of the form: if a certain
event happens and a condition is met, then a specific action is executed. IE have a great
impact on daily life, thus it is essential for IE to meet requirements of correctness,
reliability, safety, security and desired reliable behaviour [5]. These properties are
quite hard to be ensured since programming rule-based systems is a difficult and error-
prone process [6, 7]. More precisely, the interactions of rule actions can cause the
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system behaviour to be unpredictable or unsafe, thus verification of consistency and
safety properties of IE systems has became a necessity [8].

Various approaches have been proposed in order to ensure IE properties. For in-
stance, software testing [9] has been widely used to improve software quality. While
testing can provide correctness of different systems, it is not adequate for IE where
an adequate notion of coverage is missing and the environment in which the system
runs is unpredictable. Formal methods techniques can provide an effective solution for
analysing and establishing the correctness of IE systems, especially for applications
where safety is a critical issue. One of the formal approaches closer to ours is pre-
sented in [10]. It proposes a method to analyse the dynamic behaviour of a set of ECA
rules by first translating them into an extended Petri Net [11]. This allows the checking
of termination and confluence properties. Authors in [12] investigate the possibility
of using a pure Binary Decision Diagram ([13]) representation of integer values, and
they focus on a particular class of programs. These are ECA rule-based programs
with restricted numerical operations. In [14] a tool-supported method for verifying and
controlling the correct interactions of ECA rules is presented. This method generates
correct rule-based controllers and is based on formal models that are related to reactive
systems. The authors in [15] propose a formalisation of an ECA rule-based system that
is translated into a Heptagon/BZR program. This offers to the users a combination of
a high-level ECA rule language with a compiler and a formal tool support for Hep-
tagon/BZR. In [16], a set of ECA rules is transformed into different kinds of automata
and then the automata verification tool Uppaal [17] is applied. The approach is lim-
ited to performing model checking of timed automata and their correspondence to the
provided ECA rule set.

1.1 Our contribution

In this paper we present a novel theoretical framework for the verification of ECA rules
in intelligent environments. Our framwork is based on software verification techniques
and is implemented in the vIRONy tool 1. vIRONy is based on the combination of
formal methods and simulation techniques, with the aim of supporting programmers
and end-users during the modelling and verification phases of IE systems that are based
on ECA-rules. The features of vIRONy include:

• a syntactic analyser for checking the correctness of the source program and for
enabling users to identify and avoid syntactic errors;

• a formal verification component based on different techniques (SMT solvers and
program analysers) to check safety and correctness of the program expressed as
a set of ECA rules;

• a simulation environment to generate and investigate specific behaviours of the
system;

1The current version of vIRONy is open source and it is available at https://gitlab.com/
MichelangeloDiamanti/ecaProject.
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1 Program ⌘ ( Device | Rule | VarDecl )+;

2 Device ⌘ PhysicalDevice | LogicalDevice | Set;

3 PhysicalDevice ⌘ physical (sensor|actuator)
4 Type Id [= Exp]

5 node(Id Sep Id)[in id (Sep Id )*][where BoolExp];

6 LogicalDevice ⌘ logical (sensor|actuator)
7 Type Id = Exp[in Id (Sep Id )*] [where BoolExp];

8 Set ⌘ set (sensor | actuator) Type Id;

9 Rule ⌘ rule Id on Id (Sep Id)*when BoolExp then Action;

10 Action ⌘ [Id = Exp ]+;

11 Exp ⌘ BoolExp | IntExp;

Figure 1: The IRON extended BNF

• a semantic analyser used to perform qualitative and quantitative analysis of the
system in terms of number of rules invoked, energy efficiency, etc.

Compared to our approach, the ones in [10] and [12] do not provide methods for
verifying application-specific properties like redundancy, consistency and usability of
rules. The work presented in [16] is not tailored to a specific rule language and requires
a specific model checking tool, while the verification methods proposed in our work
are based on a domain-specific language for IE, and allow the definition and the im-
plementation of verification algorithms that can use efficient techniques such as SMT
solvers and theorem provers. These can enable the verification of application-specific
properties. With respect to our approach, in [14] properties such as correctness and us-
ability are not considered for verification. Redundant rules are not directly detected by
Heptagon/BZR [15]. Duplicated rules are compiled and executed at run-time and rule
actions are activated using the or operator. Instead, our approach enables end-users
to identify redundant rules and decide how to modify the program; therefore it allows
a deeper analysis and understanding in the design phase, giving to the programmer a
greater control on the system he or she intends to develop.

2 Preliminaries and notation

In this section we recall IRON [18], a domain-specific language for IE based on ECA
rules and the formal model expressing its semantics [19].

IRON (Integrated Rule ON data) is a restricted first-order logic language that sup-
ports the categorisation of devices into sets [20], allows the definition of properties over
sets and supports multicast and broadcast abstractions. We report the main constructs
of the IRON syntax in Fig. 1 [21].

The formal model for the execution of ECA rules in IRON exploits the features
that are typical of IE, taking into account the fact that a generic action defined by the
user can only change actuator configurations. For the sake of simplicity but without
loss of generality, the formal model does not include the definition of sets and the
distinction between logical and physical devices included in IRON (these could be
introduced at the cost of additional notation but do not affect the overall partitioning
strategy described below).
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This uses the function yai,a j of Figure 7 which returns true when two different
actions ai and a j modify the actuators in the same ways (i.e., no contradiction occurs).

We consider an ECA-rule based system consisting of: (i) a set D of variables rep-
resenting the input/output devices of the system, denoted with i and o respectively (to
refer to a generic element of D we use the letter d); (ii) a set Inv of static constraints
inv of the system identifying the admissible values for each device (each invariant is a
restricted first-order logic predicate as defined by the IRON grammar); (iii) a set R of
ECA rules of the form Event[Condition]/Action.

A state of the system is an assignment of values to the devices in D and the universe
is the set of states. In detail:

Definition 1. A state of the system is a function j : D! Val where Val is a finite set
of integer or boolean values.

Definition 2. The universe F of an ECA-rule based system is the set of all possible
states of the system, i.e., the set of all possible functions j in definition 1.

By adding constraints to the system, i.e. conditions that must be satisfied, we can
define the admissible state space:

Definition 3. Let F be the universe. The admissible state space Fa is the subset of F
whose elements are all the states j that satisfy the constraints of the system.

Given D and F , we consider a finite set R of labels for ECA rules R= {r1,r2, ...,rk}
for k 2 N0. A generic rule r in R is represented as er[cr]/ar, where er ,cr ,ar are labels
for the event, the condition and the action of r respectively.

We observe that devices can change their values according to external changes
(sensors) or internal changes (actuators change their values in response to ECA rules
being triggered). As a consequence, the evolution of the system can be partitioned into
two sets: the set of artificial transitions resulting from the activation of ECA rules, and
the set of natural transitions that result from changes in the environment. According
to this partitioning, we can distinguish between stable and unstable states: the system
is in a stable state if only natural transitions can be applied, while unstable states are
those states to which only artificial transitions can be applied.

Figure 2: System behaviour

We use the generic example represented in Fig. 2 for a clarification of how natural
transition (denoted by tN and dotted arrows) and artificial transition (denoted by tA and
solid arrows) interact. In this figure, white circles are unstable states in Fa, while
green states are stable states. States are grouped together into three sets, A1,A2,A3 in
which the input sensors do not change value. Natural transitions link together these
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sets. Inside each set, the states are linked to each other via artificial transitions, since
changes are due only to actuator values.

The representation of the evolution of the system is based on two important hy-
potheses: (1) the initial admissible configuration of the system is given by an external
entity; (2) artificial transitions take much shorter time than natural transitions.

Finally, since we consider a finite set of devices that can assume a finite set of
values, it is possible to represent the evolution as a Finite State Automaton (FSA) [22],
where the edges correspond to the transitions of the system and the vertices to its states.

3 Properties and verification algorithms

Our aim is to avoid “unsafe” and “incorrect” situations deriving from erroneous defi-
nitions of ECA rules that may result in inefficient or potentially dangerous effects on
the real world. Based on literature review of related and previous works [18, 14], we
identify the following properties that can be considered representative for “safety” and
“correctness” of ECA rule-based systems: termination, consistency and determinism.
We formally define each of them and we present the verification algorithms below.

3.1 Termination

Definition 4. An ECA rule-based system satisfies the termination property when all
stable states (that satisfy the conditions of some rules) always lead (with the application
of a finite number of rules) to a new stable state.

In order to prove termination we make use of T22 (see [23, 24, 25]), a tool designed
to prove temporal properties of programs, such as safety and termination. The tool
implements the TERMINATOR-based approach to termination proving (see [26]) with
some modifications. The idea of the technique is to reduce the checking of termination
arguments to an incrementally evolving safety problem. T2 represents programs as
graphs of program locations connected by transition rules with conditions (expressed
by the command “assume”) and assignments to a set of integer variables V . The
canonical initial location is called START.

Given a generic rule-based program written in IRON syntax, we show the encoding
into T2 format in Fig. 3. Consider a generic program in IRON consisting of a set
of devices D, a set of rules R and a set of invariants Inv set (see lines 1� 3 in Fig.
3). We consider the set of initial states characterised by an assigned configuration of
actuator values (line 4). We define a set of variables in lines 5� 13 that are used for
the translation. Lines 14� 40 describe the algorithm for generating the program in
T2 format. This program corresponds to the automaton represented in Fig. 4 that is
characterised by two states that we generically name 0 and 1. The execution starts from
state 1, characterised by the assigned configuration of values, a generic configuration
of sensors (the function nondet() assigns values randomly). In addition, state 0 is
admissible, as the invariants are assumed as valid (line 17). A natural transition (line
26) corresponds to a transition from state 0 to state 1. When a natural transition moves

2available at https://github.com/mmjb/T2.
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1 let D = I[O theset ofdeclaredlabels

2 let R := {r1 , ....,rk} theset ofrulessuchthateach r 2 R is of theform r : er [cr ]ar where er = {dw1 , · · · ,dw f }⇢ D and

ar = {oa1  va1 , · · ·oap  vap } , with oa1 , . . . ,oap 2 O

3 let Inv set := {inv1 , ...., invv}
4 let o = val theinitialvaluefor o 2 O

5 define Inv =
v̂

j=1
inv j

6 for each d 2 D:
7 define d_changed

8 for each r 2 R
9 for each oa j 2 ar

10 define o_prime

11 for each d 2 er
12 let d_check = (d_changed!= 0)

13 define eT2_r =

_

d2er
d_check

14 write

15 START: 0;

16 FROM: 0;

17 assume(Inv); //invariants

18 for each i 2 I // sensorinitialvalues

19 write i := nondet();

20 for each o 2 O // actuatorinitialvalues

21 write o := val;

22 for each o_changed //actuatorschanges

23 write o_changed := 0;

24 for each i_changed //sensorschanges

25 write i_changed := nondet();

26 TO : 1;

27 for each r 2 R
28 write //rule r

29 FROM: 1;

30 assume((Inv) && (eT2_r) && (c_r));

31 for each oa j 2 ar

32 write

33 o_prime := va j ;

34 o_changed := (o-o_prime);

35 o := o_prime;

36 for each o 2 O suchthat o 6= oa j 2 ar8 j

37 write o_changed := 0;

38 for each i 2 I
39 write i_changed := 0;

40 TO : 1;

41 end

Figure 3: Algorithm for translating input files from IRON to T2 format.

6



Figure 4: Execution model of IRON programs in T2.

the state from 0 to 1, the rules in R, i.e., the artificial transitions of the system, as shown
in Fig. 4, can be applied when their corresponding event is met (line 30).

Proposition 1. The algorithm in Fig. 3 is correct.

Proof. First, we show that if a generic ECA rule can be activated in an IRON program
(PIRON), then it can be activated in the corresponding T2 program (PT 2) too, and vice-
versa. Indeed, given a generic PIRON and a generic ECA rule r : er[cr]ar such that
r 2 PIRON , the rule is activated if and only if: (i) the invariants are valid; (ii) the event
er is triggered (i.e., if a change concerning the value of at least one of the labels in er
occurs); (iii) the condition cr is valid. As shown in Fig. 3, these three conditions are all
reported verbatim in the assume at line 30. Now we show that there is an equivalence
in the execution semantics of PIRON and PT 2 programs. If a natural change occurs, then
ECA rules whose events capture this natural evolution are considered for an eventual
activation. The natural transitions correspond in PT 2 to the transition FROM 0;[..]
TO 1; (line 16�26), and the natural changes correspond to the assignments to sensor
variables through the nondet() function (line 19). When a natural evolution occurs,
and the program PT 2 is in state 1 then, if conditions (i)-(iii) are met for a certain ECA
rule, this rule is executed. Furthermore, the activation of the ECA rules in PIRON is
non-deterministic, and this non-determinism is maintained in PT 2, since all rules are
applied to the state 1 (FROM 1 at line 29). When an activation of an ECA rule in PIRON
is performed, the system is frozen, in the sense that natural transitions are not taken
into account: this condition in PT 2 is fixed at lines 38�39. The T2 program does not
allow any other kind of transition between states, and therefore the executions of the
IRON and the T2 program are isomorphic.

3.2 Consistency

Definition 5. An ECA rule-based system satisfies the consistency property if its rules
are neither unusable nor incorrect nor redundant.

The notions of unused, incorrect and redundant rule are defined as follows.

Definition 6. An ECA rule r 2 R is called unused if the condition c is false for every
state j 2Fa.

Since the set Fa is the set of all states in F satisfying all the invariants of the system,
we can alternatively say that r is unusable if the logical predicate

P = c^ inv1^ inv2^ · · ·^ invv (1)

is such that P(j) is false for all states j .
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Definition 7. Incorrect rules are those rules that can lead to a state that is outside of
Fa.

Definition 8. Given ri,r j 2 R such that ri : ei[ci]/ai, r j : e j[c j]/a j we say that ri is
redundant with respect to r j if the following conditions are met:

1. ei ✓ e j;

2. ci ^ Inv) c j is satisfiable (where, by slight abuse of notation, we denote with
Inv the conjunction of all invariants); and,

3. for every state j satisfying ci^ Inv, applying ai to j is equivalent to applying a j
to j , which we write as j[ai] = j[a j].

The algorithms for verifying the consistency property are described in detail in
[21]. The key insight of the verification approach is observing that it is possible to
perform consistency verification of ECA rule-based systems by using Satisfiability
Modulo Theories (SMT) [27, 28] and predicate transformer techniques ([29, 30]). We
briefly report in this paper the verification algorithms.

An SMT solver is any software that implements a procedure for satisfiability mod-
ulo some given theory, for example the theory of linear arithmetic. Typically, SMT
solvers support several fragments of First Order Logic (FOL). The solution of an SMT
problem is an interpretation for the variables, functions and predicate symbols that
make the formula true [28]. We use Z3 [31], a high-performance SMT Solver imple-
mented in C++ and developed by Microsoft Research.

The detection of unused rules is based on definition 6. Given a generic rule r :
e[c]/a, we have to check whether the rule can be triggered and whether the condition
c is satisfiable in Fa. This is equivalent to asking a (sound and complete) SMT solver
whether there exists j such that formula P defined in (1) is satisfiable. If P is satisfiable,
the rule r can be used, otherwise it is unusable. The algorithm is reported in Fig. 5.

1 let R := {r1 , ....,rk}
2 let I := {inv1 , ...., invv}

3 define Inv =
v̂

j=1
inv j

4 for each i = 1, ...,k:
5 if (ci ^ Inv) is unsatisfiable:

6 declare ri unused

7 end

Figure 5: Algorithm for detecting unused rules.

In order to verify the correctness of the generic rule r : e[c]/a according to definition
7, we compute the weakest precondition PInv for the set of invariants, i.e., the formula
PInv = wp(a, Inv) . In order to declare the rule r correct, the set of states where the
rule may apply must be contained into the set of states PInv, otherwise there would
exist a state where the rule applies, but from which we can reach a state outside those
satisfying the invariants. Therefore, we translate this problem into the following SMT
instance: (c^Inv)^¬PInv and we verify that this is not satisfiable. If the solver answers
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1 let R := {r1 , ....,rk}
2 let I := {inv1 , ...., invv}

3 define Inv =
v̂

j=1
inv j

4 for each i = 1, ...,k:
5 if (ci ^ Inv)^¬wp(a, Inv) is satisfiable:

6 declare ri incorrect

7 end

Figure 6: Algorithm for incorrectness verification.

that the proposition is satisfiable, then we conclude that the rule r is incorrect, otherwise
we declare that r is correct. The algorithm is described in Fig. 6.

The detection of redundant rules is performed under the following hypothesis on
the ECA rule structure: we will consider only rules r : e[c]/a where a is a non-empty
set of linear functions over integer variables in D. In order to detect redundant rules,
we have to check whether conditions 1-3 of definition 8 are verified. The algorithm is
described in Fig. 8.

yai ,a j (o) =

8
>>><

>>>:

> if o " ai and o " a j

o = E j if o " ai and (o E j) 2 a j

Ei = o if (o Ei) 2 ai and o " a j

Ei = E j if (o Ei) 2 ai and (o E j) 2 a j

Y(ai,a j) =
^

o2O
yai ,a j (o)

Figure 7: Preliminary definition.

1 let R := {r1 , ....,rk}
2 let I := {inv1 , ...., invv}

3 define Inv =
v̂

j=1
inv j

4 for each orderedpair (ri ,r j ) 2 R2 suchthat ri 6= r j and

5 suchthat ri ,r j are usable:

6 if (ei ✓ e j ) and (not(ci ^ Inv) c j ) is unsatisfiable) and

7 not(ci ^ Inv)Y(ai ,a j )) is unsatisfiable):

8 declare ri redundant withrespectto r j
9 end

Figure 8: Algorithm for redundancy verification.

3.3 Determinism

Definition 9. Given ri,r j 2 R such that ri : ei[ci]/ai, r j : e j[c j]/a j, we say that the
system is non-deterministic if the following conditions are met:

1. ei\ e j 6= /0;
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2. ci^ Inv^ c j is satisfiable;

3. 9j that satisfies ci^ Inv^ c j and j[ai] 6= j[a j].

A pair of rules ri,r j is non-deterministic if there is at least one admissible state in
which both rules are triggered and the effects of their actions on the system are not the
same. Condition 1 means ei and e j have at least a common label. Thus this condition,
if met, guarantees that at least the occurrence of an event triggers both ri and r j. If both
1. and 2. are verified, then ri and r j are applicable to the same state. If the result of
applying action ai is different from the result of applying a j for at least one state j in
ci^ Inv^ c j, then ri and r j make the system non-deterministic.

The verification procedure of the determinism property is very similar to that one of
redundancy, and it is performed under the same hypothesis. The algorithm is described
in Fig. 9. All the pairs of distinct rules are considered. According to definition 9, three
conditions must be verified: if two rules are triggered together, i.e., the event parts have
a least a common label, both conditions are met, and the actions have different effects
on the system, then the system is non-deterministic. The procedure described below
must be performed for all pairs of rules (line 4) .

1 let R := {r1 , ....,rk}
2 let I := {inv1 , ...., invv}

3 define Inv =
v̂

j=1
inv j

4 for each pair ri ,r j 2 R2 suchthat ri 6= r j and suchthat ri ,r j are usable:

5 if (ei \ e j ) is non-empty and ((ci ^ Inv^ c j ) is satisfiable)

6 and ¬(ci ^ Inv)Y(ai ,a j )) is satisfiable):

7 declare thesystem nondeterministic

8 end

Figure 9: Algorithm for verifying determinism.

Proposition 2. The algorithm in Fig. 9 is correct.

Proof. The proof is similar to that one of the correctness of the algorithm for the ver-
ification of redundancy (see [21] for further details). Indeed, requirements (1) and
(2) of definition 9 are checked verbatim in the algorithm. Thus, it remains to show
that the algorithm is correct w.r.t. requirement (3). It can be rewritten as follows:
9j 6|= ci^ Inv^ c j,j[ai] = j[a j] . Notice that requirement (3) of definition 9 is equiva-
lent to the negation of requirement (3) of definition 8.

4 The tool vIRONy

In this section we give a quick overview of vIRONy, the prototype tool that has been
implemented to evaluate the proposed approach.
- Graphical User Interface (GUI): Fig. 10 depicts the GUI of the tool: users can
select input files written in IRON syntax and select the desired functionality.

When the user opens a file for the first time, a TabbedPane is opened. The main
components of the TabbedPane are:
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Figure 10: Graphical User Interface of vIRONy

• Development area: it is a TextArea the user can use to write or modify the pro-
gram.

• Functionality panel: the user can access the desired functions in order to analyse
or generate a simulation of the program.

In detail, by accessing the Functionality panel the user can insert the initial configura-
tion of values (Input tab), visualise the resulting graph of the simulation generated by
using the GraphStream library (Graph tab), make queries on the resulting simulation
(Queries tab), perform a formal analysis of the program (Analysis tab), check if the
output console gives errors (Errors tab). At the bottom, a Progress Bar indicates which
operation is currently performed.
- Syntactic analysis The parser of vIRONy is implemented using Java Compiler Com-
piler3. The vIRONy parser only accepts input files written in IRON. As we showed in
Section 2, the IRON language consists of two main components, the static part which
includes labels and invariants, and the dynamic part that is made up of ECA rules. La-
bels are used to uniquely identify the devices of the system. Each label declaration
must contain the name of the device, the value type (int or bool) and the device cat-
egory (in or out). The declaration of the invariants consists in a boolean expression
enclosed by square brackets. The syntax of ECA rules is rule : event[condition]action,
where rule is a string that uniquely identifies a rule, the event is a non-empty set of
labels (guards) separated by commas, the condition is a boolean expression, the action
is a set of assignments to actuators. It is only possible to specify a non-empty set of
assignments to be executed simultaneously; as a consequence an actuator label can be
written in at most one left hand side of an assignments. This property is controlled
through a semantic check. In addition, the labels in the event and action parts must

3See https://java.net/projects/javacc for further information.
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have been declared in the declarative part of the program and the the expression on the
right side of each assignment must be of the same type of the actuator on the left side.

The user can write the input file using the TextArea or visualise an existing one
and, before performing any kind of operation (e.g. simulation, formal analysis, etc.),
the parser is automatically called in order to check the syntactic correctness of the
program. If there are errors, the chosen operation is cancelled and it is possible to
visualise the errors found through the Errors tab that is automatically opened by the
tool.
- Formal verification: The verification procedure is based on the formal techniques
described in Section 3. Given an input file, the user can access the formal verification
by using the Analysis tab. For each property a specific tab is provided to the user
to perform specific analysis. Furthermore, an additional button Consistency allow the
verification of correctness, non-redundancy and usability, and the user can visualise the
results in a specific area.

Termination verification: vIRONy provides the users with a procedure for translat-
ing the input file written in IRON syntax into the T2 format. The file is then stored in
the computer, and available as input file for T2. T2 is run from the command line, using
the termination: command line argument (to prove (non)termination). The user
can select the initial configuration of values for the actuators, and then by submitting
them, verification of termination is performed.

Consistency and determinism verification: The verification of consistency and de-
terminism properties implemented in vIRONy makes use of the SMT solver Z3. From
an implementation perspective, in order to use Z3, a recursive algorithm has been im-
plemented to translate the expressions generated by the parser into expressions seman-
tically equivalent to the initial ones that can be verified using the SMT solver. Ac-
cording to definition 5, in order to verify if a given ECA-rule based system written in
IRON syntax is consistent, we have to check whether its rules are neither incorrect nor
unusable nor redundant.

Determinism: for what concerns the verification of the determinism property, the
tool implements the algorithm presented in Section 3.
- Simulation: we provide users and programmers with a function to simulate a possi-
ble behaviour of the system given a particular configuration of actuators. The simula-
tion generated by vIRONy is based on the formal model introduced in Section 2 and
explored in detail in [19]. Before explaining the simulation procedure, we make a pre-
liminary observation: for the sake of simulation and differently from the verification
step using Z3 and T2, devices can assume only a finite set of values (we choose for
integers the range [�128,127], but this arbitrary choice can be easily changed).

From the user perspective, the Simulation menu allows to start a computation. Af-
ter having pressed the button Start simulation the Input tab at the bottom is configured
to allow the user to set the initial configuration of values. Then Z3 checks if it is
admissible for the system: if the configuration is admissible, the simulator starts the
procedure, otherwise an alert is generated for the user. If the user only gives the con-
figuration of the actuators, the system automatically searches for the configuration of
sensors such that the complete state is admissible (by default the system searches for
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the “minimum” sensor configuration according to the lexicographic order of the ele-
ments of the table containing only sensor labels). Once a configuration is found, the
simulator starts the generation procedure of the transitions (for performance reasons,
unused rules are not taken into account). The tool automatically visualises the resulting
graph in the corresponding tab for further analysis. It is possible to export the graph in
the GraphML format4 or as an image by selecting the desired option from the Graph
menu.

We provide different strategies for a deeper understanding of the rules applied dur-
ing the simulation from a quantitative perspective that is strictly linked to energy saving
problems. Different algorithms have been implemented and they have been grouped to-
gether under the Queries tab. We highlight the fact that the analysis is based only on the
graph resulting from the simulation, so the results depend on the initial configuration
chosen by the user. We mention here a subset of the algorithms available:

• Rules count. This indicator counts how many times each rule is triggered during
the simulation. When the simulation presents a cycle, the number assigned to
those rules associated to the cycle is infinite (this would also implies that the
system is non-terminating).

• Most used rules. This query is used to find out the rules that are used the maxi-
mum number of times during the simulation.

• Initial rules. This query asks the simulation for those rules that are triggered by
a natural event.

• Actuator updates. This measure counts how many times the values of the actua-
tors are modified by ECA rules.

• Find cycles. The query extracts the cycles from the graph and reports the graph-
ical representation of each cycle.

• Find paths. This query explores the graph and finds out all possible paths reach-
ing a certain state of the system starting from another one.

5 Evaluation

In this section we consider four case studies taken from related and previous work
and we present performance results. We report only results and we refer to the files
available on-line for further details. All the experiments have been performed on an
Intel Core i7-4700MQ CPU @ 3.4GHz with 8GB of RAM running Debian Linux.

The first case study (CS1) is a lighting control system in a simple scenario and it has
been adapted from the example presented in [21]. The input file for vIRONy is shown
in Figure 11. For what concerns the consistency property, the verification procedure
declares r5 as unusable, rules r1,r9,r10,r11,r12,r13,r14 as potentially incorrect (for
instance, rule r1 doesn’t identify any condition on Ba, while r1c is a possible correct
version of r1), rules r4,r6,r7,r8,r19 do not satisfy the non-redundancy property. In

4
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addition, the system is declared non deterministic. For what concerns the termination
verification, the result is “Termination/nontermination proof failed”, meaning that the
tool T2 cannot find a proof strategy in this case. This means that developers may need
to provide manual evidence of termination properties. In this simple scenario the house
is composed of two rooms: the living room (L) and the bedroom (B). The entrance is
in the living room and the bedroom is accessible from the living room. Both rooms
contain a motion sensor (m), a light sensor (l), a light switch (s) to turn on and off the
light manually, a light actuator (a) to automatically turn on and off the lamp.

We assume that only one person has access to the house at any given time. In
Figure 11 the invariants of the system are declared at lines 2� 3. The first constraint
states that the person cannot stay in both rooms simultaneously. The second one states
that light actuators cannot be both on at the same time. As a consequence, according
to the first constraint, a state having both light actuators on is not admissible. At the
end of the verification procedure, among the rules reported in Fig. 11, the rule r5 is
declared unused, since the condition is never met, r1 is incorrect, since it could lead
outside of the domain if applied to a state having Ba := true (a possible correct version
of r1 is r1c). Rules r11 and r13 are incorrect, since they lead the system to an non-
admissible state. Among usable and correct rules, the verification procedure declares
rule r7 redundant with respect to r2, rules r4 and r19 are mutually redundant, rule r6 is
redundant with respect to r2,r7,r8, while rule r8 is redundant with respect to r2,r6,r7.

The second case study (CS2) has been adapted from [10], where a light control
subsystem in a smart home for senior housing is considered. The number of devices
is greater than that of CS1, and also the overall dynamic of the system is more com-
plex. Indeed, by using motion and pressure sensors (Mtn,Sl p respectively), the system
attempts to reduce energy consumption by turning off the lights in unoccupied rooms
or if the occupant is asleep, and it also provides automatic adjustment for indoor light
intensity based on an outdoor light sensor (ExtLgt). We made some changes in the
admissible values for lgtsT mr and in the rules involving this variable. Indeed, our
tool automatically fixes upper and lower bounds (we choose the values of +127,�128
respectively) for those integer variables that have no limited values. We also defined
some additional rules with respect to the original version of the case study in order to
have a greater number of rules to be analysed. We report in Figure 12 a subset of input
file for vIRONy. The formal analysis declares r14 as unusable, rule r2 as potentially
incorrect (since there is no upper bound for lgtsT mr, but for instance rule r2c is a pos-
sible correct version of r2), rule r11 is redundant with respect to r5. In addition, the
system is declared non-deterministic. In this case, T2 can find a proof of termination
and it gives the result “Termination proof succeeded”. Notice that by relaxing our addi-
tional constraints on variable bounds and by removing the additional rules the scenario
would be non-terminating.

The third case study (CS3) has been developed starting from the example presented
in [32] and described in [21]: a fire alarm system composed of temperature sensors,
smoke detectors and sprinkler actuators is described by means of ECA rules. When a
temperature sensor reads a value that exceeds a specified threshold and a smoke sensor
detects smoke all the sprinklers are activated. Among the rules defined in Figure 13,
rules r7,r8,r11 are declared unused, there are no incorrect rules and for what concerns
redundancy, r9 is redundant with respect to r1 and r10 is redundant with respect to r2.
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1 # Declaration

2 Blboolin

3 Bmboolin

4 Bsboolin

5 Llboolin

6 Lmboolin

7 Lsboolin

8 Baboolout

9 Laboolout

10
11 # Invariants

12 [!(Lm & Bm)]

13 [!(La & Ba)]

14
15 # ECArules

16 r1: Lm [ Lm == true & Ll == false ] La:=true

17 r1c: Lm [ Lm == true & Ll == false & Ba == false] La:=true

18 r2: Bm [ Lm == false & Bm == true & Bl == true ] La:= false, Ba:= true

19 r3: Bm [ Bm == false & Lm == true & Ll == false ] Ba:= false, La := true

20 r4: Lm [ Lm == false & La == true ] La:=false

21 r5: Lm,Bm [ Bm == true & Lm == true ] La:=true

22 r6: Bm [ Lm == false & Bm == true & Bl == true & La == true] La:= false, Ba:= true

23 r7: Bm [ Lm == false & Bm == true & Bl == true & Ba == false] La:= false, Ba:= true

24 r8: Bm [ Lm == false & Bm == true & Bl == true & La == true & Ba == false] La:= false, Ba:= true

25 r9: Bm [ Bm == false & Lm == true & Ll == false ] Ba:= true, La:= true

26 r10: Bm [ Lm == false & Bm == true & Bl == true ] La:= true, Ba:= true

27 r11: Lm [ Lm == false & La == true ] Ba:= La

28 r12: Lm [ Lm == false & La == true ] Ba:= !Lm

29 r13: Lm [ Lm == false & La == true ] Ba:= La

30 r14: Lm [ Lm == false & Ba == true ] La:= Ba

31 r15: Ba [ Ba == true & La == false ] Ba:= false, La:= true

32 r16: La [ Ba == false & La == true ] Ba:= true, La:= false

33 r17: Bm [ Lm == false & Bm == true & Bl == true ] La:= false, Ba:= false

34 r18: Bm [ Bm == false & Lm == true & Ll == false ] Ba:= false, La := false

35 r19: Lm [ Lm == false & La == true ] La := false

Figure 11: CS1: IRON program for the lighting control system in a simple scenario.

1 # Invariants

2 [ ExtLgt >= 0 & ExtLgt <= 10 ]

3 [ lgtsTmr >= 0 & lgtsTmr <= 120 ]

4 # ECArules

5 r2: Mtn, ExtLgt, Slp [ lgtsTmr >= 1 & Mtn == false ] lgtsTmr:=lgtsTmr+1

6 r2c: Mtn, ExtLgt, Slp [ lgtsTmr >= 1 & Mtn == false & lgtsTmr < 120 ] lgtsTmr:=lgtsTmr+1

7 r5: ChkExtLgt [ ChkExtLgt == true & Lgts == false & ExtLgt <= 5] Lgts:=true

8 r11: ChkExtLgt [ ChkExtLgt == true & Lgts == false & ExtLgt <= 4] Lgts:=true

Figure 12: (CS2) ECA rules for the light control system of a smart home.
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1 # Invariants

2 [ temperature > -80 & temperature < 60]

3 # ECArules

4 r1: temperature [ temperature < 16 ] heating:=true

5 r2: temperature [ temperature > 18 ] heating:=false

6 r7: temperature [ temperature < 30 & temperature > 30 ] tempAlarm:=true

7 r8: temperature [ temperature >= 1000 ] tempAlarm:=true

8 r9: temperature [ temperature == 14 ] heating:=true

9 r10: temperature [ temperature > 20 ] heating:=false

10 r11: temperature [ temperature < 15 & temperature > 50 ] tempAlarm:=true

Figure 13: (CS3) ECA rules for a fire alarm system.

1 # Invariants

2 [ (!f | w) ]

3 [ !(r & w) ]

4 [ c >= 0 & c < 120 ]

5 [ t >= 0 & t < 120 ]

6 # ECArules

7 r2: t,w [ t-c > 2 & w == true ] w:=false,c:=t

8 r2c: t,w [ t-c > 2 & w == true & f == false ] w:=false,c:=t

9 r4: t,w [ t-c > 2 & w == true ]w:=false

10 r7: t,w [ t-c>8 ] w:=false, c:=t+1

11 r8: r [ r==true & w==true ]w:=false

12 r9: r [ r==true & w==true ] c:=t+1

Figure 14: (CS4) ECA rules for an automatic irrigation system.

The verification declare the program non-deterministic and the termination verification
using T2 gives the following result:“Termination/nontermination proof failed”. The
fourth case study (CS4) consists of a Wireless Sensor and Actuator Network (WSAN)
composed of five devices for an irrigation management system and controlled use of
fertilizers. In detail, the network is composed of a a rain sensor r to sense precipitation,
a water valve actuator w, a fertilizer valve actuator f , a timer sensor t and a timer actu-
ator c for the sprinkler. In Figure 14 we define the invariants of the system and a set of
ECA rules. The formal analysis gave the following results: r5,r8,r9 are declared unus-
able, r2,r4,r7 are declared incorrect (r2c is a possible correct version of r2), and there
are no redundant rules. Furthermore, the program is declared non-deterministic and
the termination verification declares “Termination proof succeeded”. Notice that, due
to the non-deterministic nature of T2 and due to the size of the example, T2 sometimes
throws an exception on this example (timeout or out of memory).

In Table 1 we report some information about the case studies and the corresponding
results of the formal analysis performed using the vIRONy tool.

In detail, we report the cardinalities of the universe |F| and of the admissible state
space |Fa|. We also give the number of analysed ECA rules Ntot , the number Ndev of
devices, the number of unusable, incorrect and redundant rules (denoted with Nun, Ninc,
Nred) detected by the tool. Furthermore, we measure the performance of the verifica-
tion procedure in terms of time. The indicators Tun, Tinc and Tred , Tdet (expressed in
milliseconds) refer, respectively, to the duration time of the verification for unusability,
incorrectness, redundancy, determinism and Tter is the duration time of the verification
of the termination property.
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Table 1: Formal analysis: synthesis of the results.
CS1 CS2 CS3 CS4

|F| 28 230 216 219

|Fa | 9 ·24 1331 ·214 28 ·59 225 ·28

Ntot 20 17 14 17
Ndev 8 9 9 5
Unusable
Rules r5 r14 r7,r8,

r11,r12
r5,r8
r9

Nun 1 1 4 3
Tun (ms) 135 141 105 141
Incorrect
Rules

r11,r10,r13,
r12,r14,r9,r1 r2 no r3,r4,r6,r7,r1,r2

Ninc 7 1 0 7
Tinc (ms) 235 252 173 230
Redundant
Rules

r4,r6,r7,
r8,r19 r11 r9,r10 none

Nred 5 1 2 0
Tred (ms) 715 696 419 495
Determinism non-det non-det non-det non-det
Tdet (ms) 183 190 125 228
Termination Failed Yes Failed Yes
Tter (s) 88 9 7 457

The results in Table 1 show that our approach allows for the verification of the con-
sistency property of non-trivial examples that include both boolean and integer vari-
ables in approximately 1 second (see [21] for further details). The table also shows
that the running time for verifying the consistency does not seem to be affected by the
size of the state space (compare for instance CS1 with CS2), but rather by the number
of rules. In particular, among the properties of unusability, incorrectness, redundancy,
the verification of redundancy is the most computationally expensive step, as the veri-
fication happens for each pair of rules, and thus it requires a number of iterations that
is quadratic in the number of rules to be checked. All the examples presented here are
non-deterministic. The verification of this property requires a more-or-less constant
time that is independent of the size of the state space and is only partially affected by
the number of rules. The analysis of verification of termination requires special care: as
it can be seen from the examples, the tool T2 is able to prove termination in 50% of the
cases. This is expected, as proving termination is an undecidable problem. However,
T2 is a sound tool and therefore, if an answer is provided, then we know that the result
can be trusted. Verification of termination is a slower process if compared to the other
properties. In particular, the process can take up to 10 minutes for larger examples
(CS4). Moreover, it should be remarked that T2 is non-deterministic: this means that
the tool may select different strategies even if it is invoked on the same example. As a
result, in some cases (such as for CS4) it may happen that the tool sometimes finds a
proof, and sometimes it fails with an out-of-memory or timeout error.

The evaluation is also used to assess the performance of the simulation environ-
ment of vIRONy. Table 2 reports for each case study the performances of the simulator
implemented in vIRONy. The performances are measured in terms of time Tsim (ex-
pressed in milliseconds), and the initial configuration of actuators is detailed for each
case study (the value “F” represents “false”).

In Table 3 some of the results obtained by the semantic analysis performed on
the generated simulations (ref. to Table 2) are reported. End-users can benefit from
these results as they allow to analyse the system in terms of energy consumption and
efficiency of the system, for a deeper understanding of the rules and the system from a
quantitative perspective that is strictly linked to energy saving problems.
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Table 2: Simulation: synthesis of the results.
CS1 CS2 CS3 CS4

Tsim 2066 5673 359002 5030

Initial
Values

Bl: F,
Bm: F,
Bs: F,
Ll: F,
Lm: F,
Ls: F,
Ba: F,
La: F

lgtsTmr: 0,
intLgts: -128,
Lgts: F,
ChkExtLgt: F,
ChkMtn: F,
ChkSlp: F,
Mtn: F,
Slp: F,
ExtLgt: 0

temperature: -9,
smoke: F,
presenceLiving: F,
sprinkler: F,
heating: F,
tv: F,
light: F,
tempAlarm: F,
smokeAlarm: F

c: 0,
f: F,
w: F,
r: F,
t: 0

Table 3: Simulation analysis: synthesis of the results.
CS1 CS2 CS4

Initial Rules r10, r7, r17,
r2 : 1 time r8 : 3 times r1c, r6, r7, r7c,

r1 : 3 times
Time (ms) 21,5 16,8 84,4

Actuators
Updates

La, Ba :
• times

ChkExtLgt, Lgts,
ChkMtn : 0 time,
ChkSlp : 24 time,
lgtsTmr : 1 time,
intLgts : 25 times

c, w : 15 times,
f : 3 times

Time (ms) 67,9 2,9 0,7
Find cycles 3 0 0
Time (ms) 69,2 27,9 0,1
Find Paths
Time (ms) 328,1 n/a 184,0

6 Conclusions and future work

This paper combines different software verification techniques for modelling and ver-
ifying properties of ECA rules in intelligent environments. We first define a domain-
specific language (IRON) that can be employed both by developers and by end-users to
program and configure an ECA rule-based system for IE. The expressivity of IRON en-
ables the application of high performance methods for verifying certain requirements
that are specific for ECA-rule based systems for IE. We have implemented our ap-
proach in the open source tool vIRONy that has been validated by considering four
cases studies from the literature. As future work we plan to add into our system data
analysis in order to discover the global properties of the system. This rules will be
encoded in iron and will be formally verified [33, 34, 35].
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