Distributed Intrusion Detection Systems for enhancing Security in Mobile
Wireless Sensor Networks*

Leonardo Mostarda
Dipartimento di Informatica
Universitd degli studi dell’ Aquila, Italy.
mostarda@di.univaq.it

Abstract

We present an approach to provide Intrusion Detec-
tion Systems (IDS) facilities into Wireless Sensors Networks
(WSN). WSNs are usually composed of a large number of
low power sensors. They require a careful consumption
of the available energy in order to prolong the lifetime of
the network. From the security point of view, the over-
head added to standard protocols must be as light as pos-
sible according to the required security level. Starting from
the DESERT tool [14, 16, 25] which has been proposed
for component-based software architectures, we derive a
new framework that permits to dynamically enforce a set
of properties of the sensors behavior. This is accomplished
by an IDS specification that is automatically translated into
few lines of code installed in the sensors. This realizes a dis-
tributed system that locally detects violation of the sensors
interactions policies and is able to minimize the information
sent among sensors in order to discover attacks across the
network.

1 Introduction

A Wireless Sensor Network (WSN) usually consists of a
number of different modalities sensors that, when combined
with a microprocessor and a low-power radio transceiver,
form smart network-enabled nodes. The sensed data can be
related to different applications but in terms of capabilities
all the nodes cooperating in the WSN can be assumed as
homogeneous. A first level of cooperation may be viewed
just to route collected data outside the sensed area to a fixed
infrastructure (the sink nodes) where it is processed. Con-
cerning the applications, medical services, battlefield oper-
ations, crisis response, disaster relief, environmental moni-

*The research was partially funded by the European project COST
Action 293, “Graphs and Algorithms in Communication Networks”
(GRAAL). Preliminary results contained in this paper appeared in the [15].

Alfredo Navarra

Dipartimento di Matematica e Informatica

Universita degli Studi di Perugia, Italy.
navarra@dipmat.unipg.it

toring, premises surveillance, robotics are included. Due to
the critical environment where such kind of networks may
be used, as a second level of cooperation we are interested
in investigating security issues. Such kind of networks are
in fact frequently subject to attacks by malicious intrud-
ers. Intrusions take place through a sequence of actions
that aim to subvert the network system. There are many
vulnerabilities and threats to a mobile WSN. They include
outages due to equipment breakdown and power failures,
non-deliberate damage from environmental factors, physi-
cal tampering, and information gathering. In the following
we summarize some of them (see [27] for an extended sur-
vey).

1. Passive Information Gathering: When communica-
tions are in clear or an intruder has got in some way the key
for decryptions, it can easily pick off the data stream.

2. Traffic Analysis: Although communications might be
encrypted, an analysis of cause and effect, communications
patterns and sensor activity might reveal enough informa-
tion to enable an adversary to defeat or subvert the mission
of a WSN.

3. Compromised Node: Due to an external intervention,
a sensor may be compromised and can be used to subvert
the correct WSN behavior.

4. False Node: Additional fake nodes could be thrown in
the sensed area sending false data or blocking the passage
of true data.

5. Node Malfunction or Outage: A node in a WSN may
malfunction and generate inaccurate or false data or it could
just stop functioning hence compromising used paths.

6. Message Corruption: Attacks against the integrity of
a message occur when an intruder inserts itself between the
source and the destination and modifies the contents of a
message.

7. Denial of Service: A denial of service attack may take
several forms. It may consist in jamming the radio link or
it could exhaust resources or misroute data (see [17] for a
more detailed discussion).

The category of attacks outlined in 1. and 2. are passive

attacks, while the remaining ones are called active attacks.
This is due to the fact that the former ones do not produce
a modification of the traffic network. They are usually ad-
dressed by encryption mechanisms that obscure the traffic
to unauthorized sensors. A lot of work has been done in
this direction in order to reduce the complexity of the ap-
plied algorithms and hence the consumed energy (see for
instance [5, 6]). In this paper we are interested in the sec-
ond kind of attacks where the detection of malicious behav-
iors can be locally detected by observing the traffic over the
network. We focalize our attention on Intrusion Detection
Systems (IDSs) that analyze the observable behaviors of the
systems (see for instance [28, 10, 26, 14, 19]) in order to de-
tect attacks.

Intrusion detection techniques are successfully applied
to wired networks, however most of them are not suitable
for the wireless context. The inadequacy of standard IDS in
WSNss is a consequence of the open medium access, of the
dynamic topology, of the cooperation needed among sen-
sors (collaborative algorithms) and the lack of a fixed topol-
ogy where all information flows. The detection of an at-
tack may not be possible only considering the traffic locally
sent/received by a sensor. Therefore, there must be some
form of correlation among the data received by the sensors.
This will permit to discover attacks that are scattered over
several sensors.

Besides the problems mentioned above, in mobile WSNs
the detection has to address the problems imposed by the
limited battery, restricted computational power of the sen-
sors, low bandwidth and slower links. Moreover, sensors
mobility can complicate the detection since the correct be-
havior of sensors is location dependent (i.e., the sensors cor-
rect behavior can change over time). In summary, an IDS
for a mobile WSN should: (i) be decentralized; (ii) min-
imize the traffic overhead; (iii) address the mobility prob-
lem.

We use a specification-based approach to provide in-
trusion facilities into mobile wireless sensor networks.
Specification-based IDSs [14, 19, 26] use some kind of for-
mal specification to describe the correct behavior of the sys-
tem. The detection of violations involves monitoring de-
viations from the formal specification, rather than match-
ing specific well-known attacks. The advantage of this ap-
proach is the ability to detect previously unknown attacks
at the expense of providing a formal specification of correct
information flows.

In this work we automatically generate distributed-
specification-based IDSs for mobile WSNs. In our system
model each sensor s plays a role r that defines the possible
messages sent and/or received by s. We use an automaton
(in the following referred to as Global Automaton) as the
basis in building a specification-based IDS. The Global Au-
tomaton defines an ordering among the roles messages and

Filter F1 Filter F2
Qb<§ g e
Filter F4 Filter F3

QQ% NN

(a) Generating the distributed formal specification

(b) Run-time monitoring

Figure 1. Specification and monitoring

their correct format. We have developed an algorithm that
given a Global Automaton produces a set of local automata
each of them assigned to a role. For instance, in Figure 1.(a)
we draw a Global Automaton decomposed into four local
automata each of them assigned to arole. A local automaton
(related to a role r) constitutes the basis in building a filter
that can be used to monitor each sensor playing the role r.
For example, in Figure 1.(b) we show nine sensors {S1, .. .,
59} each of them playing a different role among {1, ...,4}
and monitored by the related filter {F'1, ..., F4}. Each fil-
ter locally monitors the messages sent/received by its sensor
and locally detects violation of the policy expressed by the
Global Automaton.!

In order to validate and to explain in more detail this
approach we apply it to a recent proposed routing protocol,
CoP [23], for mobile WSNs. Note that, while the formal
specification directly derives from the considered protocol,
the method is completely independent of it. In fact, it can
be used on any kind of protocol for mobile WSNs in order
to add security aspects.

1.1 Related Work

In the field of intrusion detection systems on mobile
WSNs few works appeared in the literature. The mobility
issue is typically not addressed and moreover specific kind
of attacks are considered separately. In [8], an anomaly ap-
proach based on self-organized criticality (SOC) and Hid-
den Markov models to detect data inconsistencies is pro-

!Indeed we observe the interactions with its transmitting/receiving sys-
tem, enabling it according to the specified polices.

posed. This approach is developed based on the structure
of naturally occurring events. With the acquired knowl-
edge distilled from the self-organized criticality aspect of
the deployment region, it applies a hidden Markov model.
It lets sensor networks adapt to the dynamics norm in its
natural surrounding so that any unusual activities can be
singled out. Another paper formulates the attack-defense
problem by means of the game theory and use Markov Deci-
sion Process to predict the most vulnerable sensor nodes [1].
It formulates the attack-defense problem as a two-player,
nonzero-sum, non-cooperative game between an attacker
and a sensor network. It shows that this game achieves
Nash equilibrium and thus leads to a defense strategy for
the network. Then, it uses Markov Decision Process to pre-
dict the most vulnerable sensor node. Finally, it uses an
intuitive metre (nodes traffic) and protects the node with the
highest value of this metre. Indeed, wireless sensor net-
works are susceptible to many forms of intrusion. In wired
networks, traffic and computation are typically monitored
and analyzed for anomalies at various concentration points.
This is often expensive in terms of networks memory and
energy-consumption, as well as its inherently limited band-
width. Wireless sensor networks require a solution that is
fully distributed and inexpensive in terms of communica-
tion, energy, and memory requirements. In order to look for
anomalies, applications and typical threat models must be
understood. It is particularly important to understand how
cooperating adversaries might attack the system. The use of
security groups may be a promising approach for decentral-
ized intrusion detection [27]. Apart from those more gen-
eral approaches, some papers provide intrusion detection
techniques for particular operations. [11] describes a dis-
tributed algorithm, BoundHole, building routes around the
routing holes, which are connected regions of the network
with boundaries consisting of all the stuck nodes. It shows
that hole-surrounding routes can be used in geographic rout-
ing, path migration, information storage mechanisms and
identification of regions of interest. [9] proposes a general
scheme to detect localization anomalies that are caused by
adversaries. It formulates the problem as an anomaly in-
trusion detection problem, and proposes a number of ways
to detect localization anomalies. [24] describes an intrusion
detection technique that uses information on both the net-
work topology and the positioning of sensors to determine
what can be considered malicious in a particular network
place. The technique relies on an algorithm that automati-
cally generates the appropriate sensor signatures. It applies
that approach to an intra-domain distance-vector protocol
and reports the results of its evaluation. Moreover, there are
some papers applying fault-tolerant technologies in provid-
ing network security. In [4], secure multi-path routing to
multiple destination base stations is designed to provide in-
trusion tolerance against isolation of a base station. Also,

anti-traffic analysis strategies are proposed to help disguise
the location of the base station from eavesdroppers. [7] tar-
gets the identification of faulty sensors and detection of the
events reachability in sensor networks with faulty sensors.
It proposed two algorithms for faulty sensor identification
and fault-tolerant event boundary detection. These algo-
rithms are localized and scaleable for WSNs. In [29] the
authors propose a statistical approach in order to detect at-
tacks. Each cluster is equipped with a node that contains
the rules in order to perform the detection. However, this
statistical solutions have a high false alarm rate hence wast-
ing energy in order to deliver the attacks. Moreover, a sin-
gle sensor that performs all the detection activities will con-
sume its energy before other sensors and the monitoring ac-
tivities will soon be deactivated. Our approach aims to dis-
tribute the intrusion detection activities in order to prolong
the monitoring. In [26] an intrusion detection scheme based
on extended finite state machines is presented. They need to
model one automaton for each link of the network in order
to specify the correct behavior among all the connections of
ad hoc networks. A backward checking algorithm detects
run-time violations of this specification. With respect to it,
our approach for WSNs, massively divide the workload of
the monitoring activity among all the sensors participating
in the given protocol. Moreover, as input, we do not need
to model each link of the network but just a Global Au-
tomaton that specifies the behavior of the given protocol.
Then, such an automaton is automatically divided and dis-
tributed among sensors according to their actual roles in the
network.

1.2 Outline

The paper is organized as follows. In the next section we
introduce some notation coming directly from the wired en-
vironment where IDSs usually are successfully applied. We
point out basic difference with the wireless and mobile en-
vironment that must be considered for managing WSNs. In
Section 3, the CoP protocol is introduced. We make use of
it in order to better explain our approach at work. CoP is in
fact a protocol designed for routing on mobile WSNs. Our
aim, while describing our method, is to enrich the protocol
by means of security issues. Section 4 gives details about
the formalization needed to describe the system interactions
defined by the CoP protocol while Section 5 makes explicit
the state machine needed as input by our tool in order to
describe the desired behavior of the sensor network. We
show how our tool can be tuned in order to output different
levels of security. Section 6 describes the heavy solution
where all the sensors of specific areas monitor each other.
In section 7, instead, we show how the same kind of mon-
itoring can be performed with the minimum overhead by
means of a subdivision of the monitoring according to the

sensor roles. Section 8§ is devoted to experimental results. It
shows the overhead obtained on the CoP protocol. Finally,
Section 9 provides conclusive remarks.

2 From the wired to the wireless environment

In this section we introduce some basic definitions and
the notation that come directly from the wired and static
environment. As described in the introduction, this is due
to the fact that intrusion detection systems are usually more
suitable for those kinds of networks. Next, we point out the
main properties that must be considered when moving to a
mobile and wireless environment.

A wired system S is composed by a set of en-
tities {C1,...,Cp}, communicating by means of the
send(sender, receiver, msg) and receive(sender’,
receiver’, msg') primitives. sender, receiver, sender’
and receiver’ are formal parameters that take as value a
component in S. msg and msg’ are formal parameters that
take values in the domain of all possible entities messages
values. The send(C, C', m) (receive(C, C’, m’)) primi-
tive invocation is used by an entity C' (C”) in order to send
(receive) the message m (m’) to (from) the entity C’ (C).
A communication is then achieved whenever a send invo-
cation is eventually followed by the related receive invoca-
tion. In the following we assume that a global system clock
exists. However, this assumption is needed only for model-
ing purposes and it will be relaxed in Section 7.

Given a system .S, the send and receive primitives in-
vocations define an architectural system trace, i.e., a string
containing all send/receive invocations performed by the
entities of the system.

Definition 1 Let S = {C4,...,C,} be a system. Let T be
a string pips - . . Pi+1 - - .- 1 is an architectural system trace
of S if the following properties hold: (i) Vk > 0, py, is either
a send or a receive invocation performed by an entity C of
S; (i) if i < k then t(p;) < t(py), where t(p) denotes the
global system time at which the invocation occurs.

The primitives invocations performed by an entity pro-
duce an entity local trace, i.e., all invocations locally ob-
served on a single entity:

Definition 2 Let S = {C1,...C,} be a system. Let C be
an entity of S. Tc = p{ ps ... Pipis, --- is an entity
local trace of C if Vk > 0, pj is either a send or receive
invocation performed by C.

In the following we define the merge operation among
entity local traces.

Definition 3 Let S = {C1,Cs,...C,} be a system. Let
Ci and Cs be two entities of S. Let T, = pi* ps'ps' ...

C1,C1

PPy - --and Te, = pi® po’ps® .. .pjzp;il ...bethelo-
cal entity traces of C and Cs, respectively. A merge trace
Tc, ® Tc, is a new trace defined by p1 paps ... PipPi+1 - - -
where: (i) ps appears in T, ® T, if and only if p, appears
either in T, or Tg,; (ii) for each p; and p; appearing ei-
ther in Tc, or Tc, if t(p;) < t(p;) then p; appears before
D in T01 D TCz'

In our system model each running entity C; defines an
entity local trace T, and the merge of all entity local traces
define an architectural system trace 7.

For the ease of notation we denote the invocation send(
Cl, CQ, ml) (T’BCBZ"US(03, 04, m2)) with !ml,Cl,Cz
(?mo_C3_CY), i.e., we substitute send (receive) with the
symbol ! (?7) followed by the message m; (ms) and the
sender (receiver). Moreover, we denote with pc an in-
vocation performed by C' that can be either of the form
!ml,C',Cl or ?W’LQ,CQ,C.

This system model, characterized by send and receive
invocations, has been shown to be flexible enough to model
different distributed systems interactions and communica-
tion patterns. Messages can be structured as needed for
security and modeling purposes (e.g. a message can be a
service invocation, hardware signals, control signals).

Generally speaking, we assume that each en-
tity C' implements an interface. The C interface
contains each C' required and provided service (if
any) described using the notation !serviceName
(listO f Parameters).returnType and ?serviceNamel
(listO f Parametersl).returnTypel, respectively. The
former means that C is a client of the serviceName
service having the listO f Parameters formal parameters
and the returnType returned value type. The latter means
that C' is a server of the serviceNamel service. The
listO f Parameters is a sequence of the type 17 D; X;,
..., T, Dy, X,, i.e., a sequence of parameter declarations.
A parameter declaration T; D; X; can be described as
follows. Tj; is a label that can take one of the following
values: in and out. in specifies that the parameter X; is
an input service parameter (i.e., it must be provided to
the service). out specifies that X, is an output service
parameter (i.e., it contains an output after the service
execution). D); is the domain of X; and defines the set of
values that it can take. Finally, a service returnT'ype is the
set of values that the service can return to the environment.

The entities then communicate by means of services in-
vocation. There are three main types of entities communi-
cation models [3]: (i) synchronous; (ii) asynchronous; (iii)
deferred synchronous. As it is implemented in the CORBA
interface definition language the type of service invocation
is specified by means of a label that is prefixed to the ser-
vice declaration. However for the sake of brevity we do not
show such detail in all entities interfaces described in this

paper.

In the following we show how this architectural model
can be mapped to our system one. Let C' (C”) be an entity
that requires (exports) the service ! (?) serviceName (T}
D, Xy, ..., T, D, X,).returnType. Synchronous and
deferred synchronous service invocations from the client C
to the server C’ are modeled with the following sequence
of send and receive invocations: (1) !'m_C_C’ where m =
serviceName(z1, ... ,xn), and x; € Dy, (i.e., the client
invocation); (2) ?m_-C_C" (i.e., the server incoming re-
quest); (3) !m/_C’_C where m'’ = serviceName. and
serviceName. encodes the C’ outgoing response (i.e., the
server answer); (4) ?7m’_C’_C (i.e., the client incoming re-
sult). An asynchronous service invocation is modeled as
above without steps 3 and 4.

In this case the structure of messages sent by means
of our primitives is strictly related to the entity interfaces.
If C requires the service !serviceName (I1D1 X1 , ...
,Tw Dy, Xp,).returnType then C can send a message
serviceName(Xy, ..., Xp), where X1, ... X, are suit-
ably instantiated and can receive the incoming message
serviceName. (i.e., the service invocation result) belong-
ing to the set returnType. Symmetrically, If C’ pro-

vides the service ?serviceNamel (Th'Dy Xy , ... , T,
D,, X,). returnTypel then C’ can receive a message
serviceNamel(Xy, ... ,X,), where Xy, ... X, are

suitably instantiated and can send the outgoing message
serviceNamel. (i.e., the service invocation result) belong-
ing to the set returnT'ypel. Therefore from now on mes-
sages can have the above structure and are suitably instanti-
ated when they are sent.

Note that the above system model implicitly assumes
that: (i) both sender and receiver of a message are known;
(ii) an entity cannot change its location; (iii) an entity cannot
change its interface and behavior. In the process of adapt-
ing the previous model to mobile WSNs we match entities
with sensors and entity interfaces with roles. Clearly the
previous assumptions cannot be now guaranteed. The more
evident is (ii) since we are in a mobile environment. For (i),
due to the random and mobile environment, a sensor can-
not know its neighbors at each time unless it wastes energy
in control messages. Concerning (iii), in general, in WSNs
sensors change their behavior according to their actual role
in the network, i.e., a sensor can change the messages it can
send/receive. The idea is usually to guarantee a balanced
energy-consumption of all the sensors participating in the
protocol. As we are going to see in the next section, in the
CoP protocol [23] the roles change depending on the ac-
tual positions of the sensors. We therefore remove assump-
tions (i), (ii) and (iii), hence obtaining a framework able to
work with all those protocols for WSNs in which sensors
have different behaviors according to a predetermined set
of roles. The security aspects that we want to guarantee by
this method concern the monitoring of the normal behavior

Centralized
Storage Device

Figure 2. Multihop routing from the area of in-
terest (shaded area) to the sink in a sensors
field.

of the sensors participating in a given protocol. In order to
better describe and validate our new approach, we apply it
on a protocol designed for mobile WSNs, CoP [23]. Be-
fore giving the details of our approach according to the CoP
protocol, in the next section we first present how it routes
messages on random instances of uniform sensors distribu-
tion.

3 Connectionless Probabilistic (CoP) routing

The CoP protocol [23] for routing on mobile WSNs as-
sumes a random uniform distribution of sensors inside a
given area. The only thing that each sensor needs to know in
order to participate in the CoP protocol is its own location,
the location of the sink (the fixed infrastructure outside the
sensed area (see Figure 2)) and a further parameter called
grid unit.

In such a model, a communication session begins when a
sensor needs to inform the sink about some collected infor-
mation of interest. Since computing operations is cheaper
than transmissions (see for instance [12, 22]), aggregating
information is desired. As in the great majority of the pro-
tocols that are proposed, the aim is to efficiently route the
message towards the destination, using the least possible
energy in order to extend the lifetime of the whole network.
To this end, the standard multihop approach was adopted
here as well. Location-awareness routing protocols for ad-
hoc networks typically assume some kind of awareness of a
greater topology among the distributed sensors. Quite usu-
ally this means that in order to make local decisions, the
nodes are required to know their neighbors’ positions as
well as their own. This is achieved by exchanging control
messages that consume considerable amounts of energy in
large, densely deployed, mobile networks. The key idea of
the CoP protocol is that the saving of energy is achieved not
only by choosing an appropriate path between source and
destination pairs but also by eliminating all the transmis-
sions usually needed by other protocols to choose the next
hop node or just to communicate the positions of the nodes

Centralized
Storage Device

- sink |

Figure 3. Multihop routing from the area of in-
terest (shaded area) to the sink in a sensors
field using the virtual grid. The empty circles
represent the area associated to each virtual
grid node. Every node inside such an area
participate in a local leader election in order
to become clusterhead.

(see for instance [2, 18, 20]). Furthermore, since we assume
mobility in our model, the determination of static paths or
the knowledge of the neighbors’ locations could be useless
in many cases where real-time connectionless communica-
tion is required.

In Cop, clustering methods are used to reduce the num-
ber of needed hops to establish the required communication
session and hence reduce the average routing time. To this
end, a two-level communication model was proposed where
each node is itself candidate to be either a normal sensor or
a clusterhead.

The protocol assumes a virtual infrastructure represented
by a grid covering the sensed area. Messages are then routed
on the grid nodes emulated by the sensors. The knowledge
of the grid is determined by considering the sink as a grid
node at the border of the area of interest and according to the
fixed grid unit. Since the sensors are randomly spread on the
area of interest, a distortion parameter called ds is fixed to
be the maximum distance from a virtual grid node (VGN)
where the real sensor has to reside in order to candidate
itself and become a clusterhead (see Figure 3). Roughly
speaking, this means that all the sensors in the fixed range
of a VGN “believe” they are grid nodes. All the other re-
maining sensors are themselves associated to some VGN
just through the minimum distance, hence determining an
area (Aygn) associated to each VGN. Note that if more
than one sensor resides inside a described circular area, a
standard local “leader election” is performed [21] in order
to elect the clusterhead. In [23] it is formally described
how to estimate the right value for ds in order to fix with
high probability that at least one sensor resides inside each
Ay an. The configuration can easily change with time, ac-

cording to the degree of the sensors’ mobility but each one
can decide which is the closest clusterhead-area or if it is a
clusterhead itself. If a sensor is a clusterhead, it can transmit
the collected information to the next clusterhead-area in or-
der to reach the sink. Since the transmission needed power
of a non-clusterhead node is less than the one needed by
a clusterhead, in order to prolong the lifetime of the entire
network, a sort of rotation in the roles could be convenient.
If the network is characterized by high mobility, then ev-
ery node frequently changes its status from clusterhead to
non-clusterhead and vice-versa. This depends on the actual
location of the sensor and therefore mobility works in fa-
vor of a fair and uniform energy consumption in the CoP
protocol.

4 Adapting the model

In the field of location-awareness and clustering proto-
cols like CoP, we model a mobile WSN by a set of sen-
sors AH = {s1,82,...,8:}. Let L C AH be a sub-
set {l1,l2,...,1} of sensors identifying the clusterhead
of a given protocol P. In other words, the sensors in L
characterize a set of areas Ar = {Ary, Ary, ..., Ary}
(clusters) where each area Ar; represents the portion of the
sensed area where the corresponding [; plays the cluster-
head role. There can be different roles according to P,
let R = {C1,Cs,...,C,} be the set of roles. Each C;
has associated an interface that characterizes all messages
sent/received by sensors playing that role.

In wireless sensor network we refine the semantic of in-
vocation. An invocation of the form !m_C_C; means that a
sensor playing the role C inside some area Ar; € A, sends
the message m to all sensors residing in the same area Ar;
playing the role C';. An invocation of the form ?m;_C_C
means that all sensors playing the role C5 inside some area
Ar; € A, receive the message m; sent by a sensor playing
the role C inside Ar;. Due to the open medium access, in
the system model for WSNs each sensor residing in a given
area belonging to A,. can sniff all the traffic occurring inside
such an area. In this model each send invocation is then im-
mediately followed by the related receive. Therefore, in our
policies, it is redundant to model the reception of a message
that is assumed to follow the related send.

In some invocation we can use the symbol ’*’ instead of
a role C' whenever the invocation is performed by an un-
known role. We can associate to each role a set of vari-
ables that are used in the policies definition. Moreover, we
specify when a role is played by exactly one sensor or by
different sensors.”

In general a sensor s can change its role from C to C” as a
consequence of: (i) changing the location; (ii) the messages

2This specification is associated with the role definition, but in this pa-
per we omit such detail.

?pos(double x,double y).void
| send(double x,double y,int dest, char [| msg).void

Out-range

?pos(double x,double y).void

! leader(double x,double y).void
| send(double x,double y,int dest, char [| msg).void
?no-leader().void
?leader(double x,double y).void

I no-leader().void
| forward(double x,double y,int dest, char [| msg).void
? forward(double x,double y,int dest, char [] msg).void
? send(double x,double y,int dest, char [] msg).void

Cluster
Head

Extern

Variables assigned to the roles

In-range: { double posx; double posy; string role; }
Out-range: { double posx; double posy; string role; }
Cluster Head: { double posx; double posy; string role; }

Figure 4. The CoP roles

locally sent/received by s.

According to the previous definitions, we can recognize
one architectural system trace (see Definition 1) for each
defined area A,,. Each running sensor s; of the area A,., has
arole I7; and defines an entity local trace T,. The merge
of such local traces generates the architectural system trace
of A,,.

In Figure 4 we show the four types of roles that each
sensor can play and the corresponding interfaces according
to the described CoP protocol. Considering each Ay gy we
define the Out-range, the In-range and the Clusterhead roles
that are played by sensors residing in it, and the Extern role
representing the sensor playing the clusterhead role inside
an adjacent Ay gn.

The role Out-range models a sensor s located in a po-
sition that is inside the Ay gy but at a distance greater
than ds from the corresponding VGN. This role de-
fines an interface composed by the ?pos(double x, double
y).void and !send(double x,double y,int dest, char ||
msg).void asynchronous services. ?pos(double x, double
y).void specifies that the sensor s can receive the incom-
ing message pos(double x, double y) used to set up its ini-
tial position. The parameters double x and double y are
suitably instantiated with the coordinates of s inside the
virtual grid. !send(double x,double y,int dest, char |]
msg).void specifies that s can send the message msg to-
wards the sink dest. The parameters = and y are instanti-
ated with the current position of s and dest is an integer that
denotes a sink.

The role In-range models a sensor s located in
a position inside an Aygy and at a distance at
most ds from the corresponding VGN. This role

adds to the Out-range role the following services:
lleader(double x,double y).void, Tno — leader().void
and ?leader(double x,double y).void. The service
lleader(double x, double y).void specifies that the sensor
s can send the message leader(double x, double y) in or-
der to become clusterhead. The parameters double x and
double y are suitably instantiated with the coordinates of s
inside the virtual grid. ?no — leader().void is implemented
by s in order to accept the notification sent by the clus-
terhead when it leaves its role. ?leader(double x, double
y).void is used by s to receive the notification of a sensor
s’ that requires to be clusterhead. The parameters double x
and double y are suitably instantiated with the coordinates
of §'.

The role Clusterhead is played by a sensor s pro-
viding the forward of messages towards the right
sink. This role defines the following services: !no —
leader().void, ?forward(double x,double y,int dest,
char [| msg).void, !forward(double x,double y,int
dest, char [msg).void and ?send(double z, double y, int
dest, char [| msg).void. The 'no — leader().void service
specifies that the sensor s can send the asynchronous mes-
sage no—leader() to the environment. This message is sent
by s in order to leave its clusterhead role due to its move-
ment or to its draining battery. ? forward(double x, double
y,int dest, char [| msg).void implements the service used
by s in order to receive the message msg. This message
is forwarded by a clusterhead s’ that resides in an area sur-
rounding the one of s. The parameters = and y denotes the
position of the clusterhead s’ and dest encodes the sink.
The service ! forward(double x, double y,int dest, char
[| msg).void is used by s in order to forward the message
msg towards the sink dest. The parameters = and y denotes
the position of s. The service ?send(double x, doubley, int
dest, char [] msg).void is used by s in order to receive a
message msg sent by a sensor s’ residing inside the Ay gy.
The parameters x and y denote the position of s’ and dest
is an integer that denotes a sink.

The role Extern models one of the clusterheads sur-
rounding the current Ay gy .

All roles have associated the real numbers x and y used
to store the current position of the sensor and the string role
that encodes the current role played by the sensor.

S The formal specification: Global Automa-
ton

We use a Global Automaton to define the correct inter-
actions among sensors (i.e., the correct architectural system
traces).

Definition 4 A Global Automaton is 5-tuple A =
(Q,qo,1,6,P) where: (i) Q is a finite set of automaton

states; (ii) qo € Q is the initial state; (iii) I is a finite set of
input symbols; (iii) 6 : Q@ x I — Q is a transition function;
(iv) P ={Py, Ps,...,P,} is afinite set of predicates.

We use integers to denote state names, in particular 0
will be always used to denote the initial state gg. [is a
finite set of invocations. § represents the policy that de-
fines the correct sequence of invocations (i.e., the correct
exchange of messages among sensors). Each transition rule
qd = 6(q,p), with ¢,¢' € Q, and p € I, has associ-
ated exactly one predicate in P denoted with P(q,¢')(p).>
P(q,q¢')(p) (e.g. p =lm_C_C") is a boolean expression
evaluated on the basis of the states g and ¢’ and the message
m. P(q,q")(!m_C_C") acts like a transition precondition,
i.e., when it is true the related transition is allowed, other-
wise the transition is not permitted.

In the following we introduce definitions related to our
Global Automaton, i.e., the invocations acceptance criterion
and the language it recognizes.

Definition 5 A Global Automaton A = (Q,qo, 1,0, P)
parses an architectural system trace T =p1,...,p;,...one
symbol at a time from left to right. Let q;_1 € Q) be the cur-
rent state of A and let p; € I be the next symbol to read. A
accepts p; if there exists a transition rule q; = 0(qi—1,D;)
defined in A and P(q;—1, q;)(p;) is true. In this case we say
that the symbol p; can be accepted by means of the A-rule

qi = 5(611'—17171,)-

Definition 6 Let A = (Q,qo,I,6, P) be a Global Au-
tomaton and T = pq,...,p;,... be an architectural sys-
tem trace. Let qo be the starting state of A and p, be
the first symbol to read. A accepts the sequence 1" if for
each current state q;_1 and next symbol p;, A accepts p;.
q¢; = 0(qi—1,Dp;) is the new state of A and p;11 the next
symbol to read.

Definition 7 The language ((A) recognized by A =
(Q,q0, 1,0, P) is composed of all traces accepted by A.

We point out that this acceptance criterion permits to rec-
ognize finite and infinite sequences of symbols.

We can annotate a rule (e.g. ¢; = 6(qi—1,'m_C_C"))
with a piece of code composed of a sequence of instruc-
tions.* We use instruction in order to set the role vari-
ables.’> Variables store the current sensor position and the

3For the sake of brevity we do not show the syntax and the semantic of
the predicates. These implementation details are described in [25] where
we show as each predicate is constituted by atomic formulae connected by
means of and, or and not operators. Atomic formulae involve message
parameters, constants and the usual operator ==, | =, >, sizeof and so
on.

4The instructions are specified in the same language used to implement
the IDS.

SEach sensor playing the role C has its local copy of these variables.

role played by it. They can be updated on the basis of:(i)
the m message; (ii) the role C; (iii) the current state q.

A Global Automaton models the correct exchange of
messages among sensors playing different roles and resid-
ing in (i) the same area; or (ii) an adjacent area. Predicates
can be used to define the correct messages format so that
some kind of attacks are avoided (e.g. sql injection, buffer
overflow).

5.1 The Global Automaton definition for
the CoP protocol

Starting from the description of the CoP protocol we now
point out some basic properties that should be guaranteed in
order to obtain a fair behavior of the protocol.

1. For each grid node there must be at most one sensor
playing as clusterhead.

2. When a finite amount of data has been collected by a
clusterhead, it must be forwarded in the correct direction.

3. A clusterhead that changes its status to normal sensor
due to a movement or because of the draining battery has to
forward all the collected messages before its movement.

4. All messages forwarded by a clusterhead have to be
received by the clusterhead of the adjacent VGN area.

5. When a clusterhead leaves its role a new sensor (if any
in the area) has to take its role.

We formalize these properties by defining a state ma-
chine that will be given in input to our tool in order to pro-
duce the distributed “patch” for the sensors participating in
the CoP protocol.

Figure 5 shows the Global Automaton related to the sen-
sors based system of Figure 4. This automaton defines the
correct sequences of messages inside each Ay gn. At the
beginning (state ¢0) all the sensors are informed about their
positions. As described in Section 3, according to their po-
sition, each sensor sets its local variable role. The In-Range
sensors candidate themselves to become leader. Once the
ClusterHead has been elected, the system move to state g1
and the real interaction can start. This transition, in prac-
tice, realizes property 1. Property 2 is realized by the path
ql,q2,q3. In this example we fixed the “finite amount of
data” by means of a maximum of three collected messages
which the clusterhead necessarily forwarded. Property 3 is
realized by means of transition g1, ¢5, in fact, if the system
state is g1 there are no messages stored in the clusterhead.
When data is forwarded, it is received by the Extern role,
i.e., some clusterhead of another Ay ¢ on the way to the
specified sink.® And this realizes property 4. Finally, prop-

®Note that, in our example, while a clusterhead is collecting messages
(i.e., the system is either in g2 or ¢3 or g4), it is not allowed to receive
a forward. This, in fact, can happen only at g1. In order to not waste
messages, this means that, according to the scheduling at the MAC layer,
there is some time that is a priori set up. During such a time a clusterhead
can wait for other messages without incurring in any forward.

yl
2,

!pos(double x,double y) S
_*_Out-range [posx=x ; posy =y |

*_In-range [posx=x ; posy

!pos(double x,double y)

{(6sw)sayo} peaHJeIsn|) " abuey-uj~
BYO '1sap jur'A s|qnop x 8|qnop)puas |

{(Bsw)seyd} pesHieisn|o abuey-INQ
(Bsw [] teyo 1sep ur'A s|gnop’x s|gnop)puss i

(Bswi]

pesHJelsn|y

{(Bsw)exoyotuseixg
(Bswi [] 1eyo ‘1s8p Jur'A Bgnop'x a|gqnop)piemioy i

Figure 5. Global Automaton

erty 5 is valid by means of transition g1, ¢5. From ¢5, in
fact, a new ClusterHead must be elected before any other
communication can occur.” Note that, when a ClusterHead
receives a forward (transition g1, ¢6), it necessarily has to
forward it (transition ¢5, q1).

Concerning the predicates, checkl(msg) is used to ver-
ify the correct format of the message msg forwarded by
the ClusterHead. This predicate permits to check that msg
is not a buffer overflow attack. The check2(msg) is sim-
ilar to the above one, however it adds a test verifying that
msg is equivalent to the compression of the two messages
previously received by the ClusterHead. The predicate
check(x,y) verifies that the leader is at a distance at most
ds from its VGN.

We use the Global Automaton as the basis to build our
specification-based intrusion detection system. We produce
a set of filters (one for each specified role) that will be as-
signed to each sensor according to their actual role. Each
filter locally monitors the sensor it resides on in order to
validate the policy expressed by the Global Automaton. We
provide different solutions in order to implement the filters:

1. a ’heavy’ solution in which each filter contains the
whole global automaton;

2. a’light’ solution in which each filter contains parts of

7 Again, in order to not waste forward messages we may think of a
buffer for the In-Range roles in which a forward is temporarily stored till a
new ClusterHead is elected.

the Global Automaton (in the following referred to as
local automaton). These parts are the minimum re-
quired in order to locally simulate the Global Automa-
ton.

3. ’intermediate’ solutions in which the local automaton
produced in 2 is enriched with further Global Automa-
ton parts.

These solutions allow a tradeoff among the security level
and the overhead generated by the filter addition.

6 Heavy solution

In figure 6 we describe the heavy solution for a filter that
resides on a sensor s playing the role C.

At step 1 the filter observes an invocation !m_C7_Cs. At
step 2 the filter takes into account the interface of the role
C4 and checks whether m can be derived from such an in-
terface. When the derivation of m fails an attack reaction
policy is undertaken.

At step 3 the filter verifies whether the current automaton
state (e.g., ¢) contains a rule ¢’ = §(q, !m_C1_C5) such that
the predicate evaluated on !m_C;_C5 is true. In this case
the filter applies one of the following steps 3a, 3b, 3¢ or 3d.

Step 3a is applied when the invocation !m_C7_Cs is per-
formed by s that is playing the role C, with C = (. In
this case the filter performs the invocation (i.e., it forwards
the message m to the environment), changes the automaton
state (that becomes ¢’) and executes the code related to the
rule ¢ = (g, !m_C;_C5). Step 3b is applied when the filter
sniffs !'m_C _Cs from the environment. The filter changes
the current automaton state to ¢’ and in the case that s is
playing the role C', with C = (5, the message m is for-
warded to s. Note that, a receive invocation from the filter
point of view immediately follows the related send invoca-
tion. Step 3c is applied when the filter detects that s has
performed a send invocation !m_C; _C5 and s is not playing
the role C1. In this case the message is discarded and a reac-
tion policy is undertaken. Symmetrically, step 3d is applied
when !m_C4 _C5 is sniffed from the network and it was not
performed by a filter s’ playing the role C;. At step 4 the
filter cannot accept the invocation in the current state, thus
the invocation is discarded and an attack reaction policy is
undertaken. Note that the interfaces are used in order to: (i)
verify the correct format of a message; (ii) establish when
the filter has to pass the message to its sensor (i.e., the role
defines an incoming service).

The reaction policy could require the sending of an alert
message. This kind of message contains the information
of the violation. The following reaction rule are applied:
(i) if the attack derives from a sensor invocation (i.e., it is
locally detected by the related filter) then the filter locally
discards the message and no alert is sent; (ii) if the filter

1. The filter observes an invocation !m_C' -Cs, if any.

P(q, q')(!m_-C1-C>) is true, then

ii. the current automaton state is changed to ¢’

i. the current automaton state is changed to ¢’

policy is undertaken: go to step 1

is undertaken: go to step 1

then an attack reaction policy is undertaken: go to step 1

2. If m cannot be derived from the interface of the role C'; then the invocation is discarded and a reaction policy is undertaken: go to step 1.

3. Ifin the current automaton state (e.g., q) the filter can accept the invocation !m._C' _Cs, i.e., there exists arule ¢/ = 6(g, !m_C1-C2) and the predicate

(a) if s is playing the role C, with C' = C'1, and the filter receives the invocation !m_C'y _C'5 from s then

i. the invocation is performed by the filter of s, (i.e., the message m is forwarded to the environment)

iii. the code related to the rule ¢’ = §(q, !m_C1_C3) is executed: go to step 1.

(b) if the filter sniffs 11m_C7 -C from the environment and the invocation was performed by a filter s’ playing the role C'1, then

ii. if s is playing the role C, with C'y = C, then the filter forwards the message m to s: go to step 1

(c) if s is playing the role C, with C' Z C'1, and the filter receives the invocation !m_C'1 _C's from s, then the invocation is discarded and a reaction

(d) if the filter sniffs 17._C'; _C3 from the environment and the invocation was not performed by a filter s’ playing the role C', then a reaction policy

4. Tf in the current automaton state (e.g., q) there is not a rule of the form ¢’ = §(gq, !m_C1-C2) such that the predicate P(gq, q¢")(!m_C1-C5) is true,

Figure 6. The heavy filter behavior: a sensor s playing the role C

sniffs an invocation that constitutes an attack, the message is
discarded and one of the filters (the “fastest” one) sends an
alert message toward the sink. We remark that, this message
is observed by all the other filters that have locally detected
the same attack hence they do not have to send it again. The
policy described in (ii) prevents that an anomalous sensor
can flood the network with alert messages.

Concerning the mobility of the sensors we can have a
sensor s that moves from an Ay gy to another one. There-
fore, the filter of s has to discover the new correct local
automaton state. In this case we provide two solutions. The
first solution adds to all message m a short integer. This
integer uniquely identifies a transition of the Global Au-
tomaton. By looking at this short integer the filter discovers
which transition of A has been applied (i.e., it discovers the
new state of its local automaton). In the second solution the
filter sniffs the traffic and, by looking at the sequence of in-
vocations, it finds the unique chain of rules that matches the
sequence. The first solution requires to add overhead to the
normal message, but it provides fast synchronization. The
second solution does not add overhead, but it can require
to sniff different invocations in order to guess the local au-
tomaton state.

Synchronization is also required when sensors can ac-
tivate the sleep mode. In this modality sensors go idle to
improve energy efficiency and wake up when required. The
period of sleep mode is highly dependent on the considered
protocol, therefore we cannot assume how long it will last.
In our approach we require that when a sensor is turned
on from the sleep mode there is a correct filter set up and
the discovery of its new automaton state. In Figure 7 we
show a sensor s playing the role C' and the basic operations

Filter Fc

Sleep mode

—_—,

&

Sensor s playing the role C)
®

Fc1

®

Setting the role variables
Resume from ¥

sleep mode
A Setting the Fc1 local /

automaton state

Analyzing the short integer

Analyzing the sequence
of messages

Figure 7. Sleep mode and sensor wake up

needed when s turns on from the sleep mode. The first op-
eration updates the variable roles to set up the new sensor
role (e.g., C'1) and the related filter (e.g, F=1). The second
operation is the discovery of the new local automaton state.
This can be done by using the solutions proposed for man-
aging mobility, i.e., (i) read an integer added to the message
in order to find out which transition of the global automaton
has been applied ; (ii) sniff the sequence of invocations to
find the unique chain of rules that matches the sequence.

In the following we describe how an IDS (i.e., the fil-
ter) based on the Global Automaton can be used in order to
detect the attacks summarized in Section 1.

Concerning the Compromised Node attack, each filter
controls all messages exchanged by the sensor where it re-
sides on. Therefore, any sensor anomalous behavior is lo-
cally detected.

The False Node attacks is prevented since all filters resid-
ing in a given area sniff and validate all traffic. Even though
new sensors (without filter) are added they must validate the
property expressed by the Global Automaton since they are
controlled by the *good’ ones. In particular, it is sufficient
to have a good sensor, in a given area, in order to detect the
compromised ones.

The Node Outage attack is prevented since when a sensor
has to transmit something and it does not (as can happen
for a ClusterHead that is not forwarding collected data), the
filter of the other sensors sends an alert.

Concerning the Message Corruption attack, step 2 ver-
ifies the integrity of a message with respect to the defined
component interface. In other words, given an invocation
IserviceNamel (T1'Dy X5, ..., T, D, X,,)-C1-Cs, the
role C; must define the service serviceNamel (T1 D1 X3
s ooy T D X3). returnTypel. Moreover, step 3¢ con-
trols that the role Cs allows the reception of the message by
defining the service ?serviceNamel (I1 D1 X1, ..., T,
D,, X,,). returnTypel.

Denial of Service is prevented by specifying a suitable
property. Assume that from a state ¢ to a state ¢’ a finite
number of messages must be received. Any sensor that per-
forms an unbounded number of invocations is detected.

7 Light solution

In this section we describe the light solution in which fil-
ters do not contain the whole Global Automaton. We use
an algorithm to decompose the Global Automaton in a set
of local automata that are assigned one for each role. The
local automaton (denoted as A¢) of the role C constitutes
the basis in realizing a filter (denoted by S¢). The filter S¢
has the same behavior of the one described in Section 6, but
it contains a smaller automaton. This solution preserves the
correctness with respect to the heavy one and brings the ad-
vantage of predicate workload distribution. As we describe
in Section 6 another method for saving energy is setting the
nodes to go idle (into sleep mode) if they are not needed and
to wake up when required. In this case the synchronization
problem (see Section 6) still arises once a sensor turns on
its transceiver. In Subsection 7.3 we show how to address
this problem.

In the following we describe the two main phases of the
algorithm, i.e., local automata generation and dependencies
generation.

7.1 Local automata generation

In this phase the transitions of the Global Automaton
are projected on local automata according to the described
roles. The phase considers the Global Automaton A =

(Q,q0, I,0,P) and a role C. The output is a prelimi-
nary version Ac = (Q¢,qco, Ic,dc, Pc) of the local
automaton related to the role C. A¢ is obtained by con-
sidering each rule ¢; = d(q,!m_-C1-Cy), with C; = C,
defined in A (i.e., the send invocation performed by a
filter playing the role C'). This rule is reflected in the
Ac-rule g1 = dc(q,!m_C1_C5), the states g and ¢, are
added to Q¢, !'m_C1_Cs is added to I and the predicate
P(q,q1)(!m-C1_C3) is added to Po. Moreover, rules of
the form ¢; = d¢ (g, !m-* _Cs), with Cy = C' are added to
Ac, i.e., when the sender of a message is not modeled, the
receiver must check the invocation. For both the above pro-
jections we say that the invocations are ’associated’ to the
role C'. In other words, looking at the Global Automaton A,
interactions that happen locally on a sensor playing the role
C are projected on Ac.

! send(double x,double y,int dest, char [msg
_Out-Range_ClusterHead {chek(msg)}

@)

{(Bsw)sayo} pesHisisn|)~ ebuey-ing
(Bswi [] 1eyd sep Jul'A B|GNOP‘X SANOP)PUSS |

Ipos(double x,double y)
_* Out-range [posx=x ; posy =y |

| send(double x,double y,int dest, char [| msg)
_Out-Range_ClusterHead {chek(msg)}

Figure 8. Projection of the Global Automaton
to the Out-Range role

! send(double x,double y,int dest, char [| msg)

_In-Range_ClusterHead {chek(msg)} 5 ;‘{E
P2
= 53
-(Dﬂ Q o
o ®
T Ipos(double x,double y) o o2
8] _* In-range [posx=x ; posy =y] S x
c® Lo
o=} @ o
L3S Is
c - T
£ 20
= =E
2 £ s=
5= B &3
5% ERa
x é I send(double x,double y,int dest, char [] msg) @ =3
2 E _In-Range_ClusterHead {chek(msg)} -2
=3) =
23 3
=2 8
g8 -
=

Figure 9. Projection of the Global Automaton
to the In-Range role

Figures 8, 9 and 10 show the local automata genera-
tion projection performed on the In-Range, Out-Range and
ClusterHead roles, respectively.® For instance, part of the

8 Again, the automaton related to the Extern role is just the view of the

Figure 10. Projection of the Global Automa-
ton to the ClusterHead role

Global Automaton related to the invocations: !pos(double
x,double y)_ x _Out — range [posx = z;posy = y),
and !send(double x,double y,int dest, char [| msg)
_Out — Range_Cluster Head{chek(msg)} constitute the
local automaton of the role Out-Range, since such invoca-
tions are locally performed by a sensor playing that role.

The preliminary version of a local automaton is not suf-
ficient to realize the correct monitoring. A local automaton
Ac can be constituted by disconnected sub-automata (see
Figure 8). The filter 3¢ cannot be able to choose the right
sub-automaton. Moreover, given a sub-automaton it cannot
establish the next one.

Our solution is to enrich local automaton with context
information and to link the sub-automata with e-moves. We
call the context information dependency information.

Definition 8 Dependency information is of the form
?f(m,C") where C' range on the name of the sensor roles.
?f(m, C") means that the message m is sent by a filter play-
ing the role C'.

Given a local automaton Ac = (Qc¢, q0c, Ic,dc, Po)
dependencies are added to the set I and their correct or-
dering is defined by means of the function . They es-
tablish the minimal information that ¢ must sniff in or-
der to locally validate the property expressed by the Global
Automaton. Dependencies are added by the dependencies
generation phase.

7.2 Dependencies generation

Dependencies affect synchronization and enabling states
of the Global Automaton A = (Q, qo, I, J, P).

ClusterHead automaton from an adjacent Ay g .

A synchronization state g of A is a state exited by at
least two transitions labeled with invocations associated to
different roles. We consider the case in which from ¢
exactly two transitions exit: ¢1 = d(g,!m;-C1-C>) and
q2 = 0(q,'m2_C3_Cy) with C1 # Cs, and ¢ # q1 # qa.

The local automata generation ensures that these tran-
sitions are projected onto the related local automata (i.e.,
qg = 501(% !ml—ol—CQ) and o = 503(% !m2703704)
are added to A¢, and Ac,, respectively). The dependen-
cies generation phase considers the synchronization state
g and adds the rules g2 = d¢,(q,?f(me,C3)) and ¢1 =
3oy (g, 7f(my1,Ch)) to Ac, and Ac,, respectively.

From the point of view of A, if it is in the state ¢
then either the transition ¢; = (g, !m;-C1-Cs) or g2 =
d(q,'mo_C5_Cy) can be applied. From the filters point of
view such possibility is lost since these rules are indepen-
dently applied by the two different filters residing on the
two different sensors. The rules g3 = d¢, (¢, 7 f(ma, C3))
and ¢1 = d¢,(q,?f(m1,Ch)) are a means used by the
filters to overcome this problem. Suppose that both the
local automata of filters S, and ¢, are in the state g,
if a sensor playing the role C is scheduled before other
ones then (i) the filter 3¢, changes the local automaton by
applying the rule g1 = 6(g,!m;-C1_Cs); (ii) filters ¢,
sniff the invocation !m,_C1_-C5 and move by applying the
rule ¢1 = d¢,(q,7f(m1,C1)). Symmetrically, if a sen-
sor playing the role Cj5 is scheduled before other sensors
then (i) the filter ¢, change the local automaton by ap-
plying the rule g2 = d(q,!mo_C3_Cy); (ii) filters S¢, sniff
the invocation !my_C5_-C4 and move by applying the rule
a2 = 6c, (g, 7f(ma2, Cs)).

The following definition generalizes the above consider-
ations.

Definition 9 Let A = (Q, qo, I, 9, P) be a Global Automa-
ton and let q be a state of A, we denote by 39 a set of filters.
S belongs to 39 if there exists p € I such that the rule
q = 0(q,p) is defined in A.

We can observe that each local automaton Ao of the fil-
ter S¢, with S¢ € 39, must contain a projection of a g-
exiting transition.

If 37 = {S¢,,Sey,---, 3¢, } and a filter S¢,, with
Se, € Q% and 1 < i < n will apply the rule ¢ =
dc,(q,'m1_C;_C'), then all filters S¢;, with S¢; € 37 and
J # i, move by applying the rule ¢’ = d¢, (¢, ? f(m1, C;)).
This means that all the local automaton of the filters in J¢
are synchronized to the state g. We call such dependencies
synchronization dependencies since they are used to syn-
chronize the filters in order to accept one invocation exactly.

A state of A is an enabling state if it is entered and exited
by transitions projected on two different local automata. For
instance, consider the state ¢ in which A defines the chain of
rules ¢ = 6(q~,!m1_C1_Cs) and g7 = §(q, 'ma_C5_Cy),

with Cy # C3, and ¢ # ¢~ . The local automata generation
ensures that the rules ¢ = §(q~,!m1_C1_C3) and ¢+ =
§(q,!ma_C5_Cy) are projected on the automata of the filters
S, and S, respectively. From the A point of view, this
chain of rules defines a constraint among the invocations
Im1_C1_C5 and !mo_C3_Cy. That is, !'mq_C7_C5 must be
accepted before !my_C5_Cy. However, from the local filters
point of view, this constraint is lost, since the chain of rules
is divided onto the filters S, and S¢,. Therefore, the filter
Se, can autonomously perform the invocation !mq_Cs_Cy
before that the invocation !m; _C; _Cy is performed by ¢, .
The problem is solved by adding dependencies.

The dependencies generation adds to Ac, the rule ¢ =
dcy (g, 7f(my, Ch)). Therefore, S, can move to the state
¢ by means of the rule ¢ = d¢, (¢, 7 f(m1, C1)). However,
this rule can be applied only when the filter $¢, performs
the invocation !m; _C4 _Cs, i.e., the filter S ¢, sniffs the mes-
sage m; sent by S¢,. This is a mean for filter ¢, to im-
pose the right ordering among the messages !m-C -C5 and
Imo_C3_Cy. We call such dependencies enabling depen-
dencies, since they are used to enable the local-filter parsing
when there is the right context condition.

Note that, after the addition of these dependencies, a lo-
cal automaton A¢ can still be disconnected, i.e., constituted
by the disconnected automata A', A2, ..., A"¢. The last
step of the dependencies generation phase links together
these local disconnected automata by means of € moves.
Given the state ¢ and ¢,, of A¢, this step can add to A¢
rules of the type g, = d¢(q, €). This epsilon move models
that the state ¢ and g,, of A are separated by a chain of
rules labeled with invocation that are not associated to the
role C. The filter $¢ can ignore these interactions mov-
ing from ¢ to g, where it will be informed by means of a
dependency when this chain of rules has been performed.

By applying usual techniques, e-moves can be removed
[13] in any local automaton Ac = (Q¢, qoc, Ic,0¢). In-
deed, let @ = q U {q1,q2,...,q,} be the state obtained
by removing e-moves from ¢ as explained in [13], where
{q1,92,.-.,qn} are all the states reachable from the given
state ¢ € QQ¢ by means of e-moves. The set of transitions
exiting from @ can only be labeled with dependency.’ How-
ever, the process of removing c-moves can create a state
@ where two different states ¢;,q; € @Q can be exited by
transition labeled with the same dependencies ?f(m,C):
q = 0c(qi,7f(m,C")) and ¢ = 6c(g;,?f(m,C’)). This
non determinism can be solved either by translating the lo-
cal automaton S¢ to the deterministic one or by letting the
filter 3¢ adding an integer k to the message m. The integer
k uniquely identifies a transition of the Global Automaton.
Therefore, although a filter can contain e-moves only one
of them can be deterministically applied.

The filter behavior S is similar to the one proposed by

9This is is shown in the on-line extended version [25].

the heavy solution: (i) it can only accept invocations as-
sociated to the role C' (i.e., the ones projected to its local
automaton Ap); (ii) it verifies the correct format and the
predicates related to invocations performed by sensor play-
ing the same role; (iii) it sniffs the network and moves when
the message matches a dependency that labels an A transi-
tion. Therefore, filters based on the light solution distribute
the workload of predicates evaluation. There are less rules
to apply. Moreover, when the Global Automaton is big in
size and a sensor never changes its role we can reduce the
memory allocation.

Ipos(double x,double y) >
_*_Out-range [posx=x ; posy =y]

{(Bsw)xyayo} pesHe)sn|) ebuey-In0O
(Bswi [] J1eyo “Jsep 1ur‘A 8|gnop’x ajgnop)puss j

(ebuey-u)
0p)puSs)j;,

'(Bsw [] teyo ‘jsap Jur'k ajgnop'x eiqn

(peapseIsIO’(Bsw] 1eyd

58P 1u1'A 8qNOP'X BQNOP)pIEMIOL)Y,

Figure 11. Local automaton of the Out-Range
role

In Figure 11 we show the local automaton of the Out-
Range role. We can observe as the local automaton allows
the send invocation only when the leader message has been
sniffed from the environment. Note that only the transitions
of the Out-range role require the predicates evaluation.

7.3 Mobility aspects and Sleep Mode

The position of a sensor can change as a consequence of
its mobility. This may also change the role of the sensor
in the network. The associated filter then, should refer to a
different automaton. It can happen that a state in the original
automaton is not present in the new one. In order to solve
this problem we propose two solutions. One is to define
a mapping function that takes in input a state g, of a role
C’ and a role C"”, and outputs a state ¢, of the role C”
that corresponds to g, in C’. Such a function should be
evaluated by the filters each time the corresponding sensor

changes its behavior (role). The overhead is then given by
the needed computations to evaluate such a function.

Another solution is to enrich the messages by making
explicit the corresponding move on the local automaton, in
such a way, that the receiver can understand which depen-
dency on the local automaton is satisfied hence discovering
its current state. The overhead in this case is given by the
extra information we need inside each message.

The right choice among those solutions strongly depends
on the given protocol. From the energy-consumption point
of view the first solution seems more suitable. In the case
where a sensor changes Ay gy, the same arguments of the
heavy solution can be applied.

As already pointed out at the beginning of the section,
synchronization problems can arise when the desired proto-
col makes use of the sleep modality for the sensors in order
to save energy. In the light solution after the sensor turns
on from the sleep mode its filter has to perform the same
operations described in Section 6 (see Figure 7). In partic-
ular, the discovery of the new local automaton state can be
done by applying the following techniques: (i) discover the
new state by observing the integer added to the message in
order to find out the new local state'?; (ii) sniff the sequence
of invocations to eventually find out a unique chain of rules
that matches the sequence.

7.4 Attacks Detection

Concerning the attacks detection, filters behave like in
the heavy solution but restricted to their own roles. The
Node Outage attack, for instance, is prevented since when a
sensor has to transmit something and it does not, the fil-
ters of the other sensors playing the same role sends an
alert. Conversely, special attention must be given to Com-
promised Node attacks since we have to ensure that the
Global Automaton is now perfectly emulated by the local
ones. The following theorem ensures that this attack is pre-
vented.

Theorem 1 Given a protocol P for mobile WSNs, let A =
(Q,q0, 1,0, P) be a Global Automaton expressing the cor-
rect behaviors of p sensors {s1, 2,83 ... Sp} according to
a set R of defined roles with respect to a cluster A,, with
1 <4 < m. Let %C]. be the filter related to the sen-
sor sj. The automaton A accepts an architectural trace
T=Ts @...0Ts, ifand only if all the sensor traces Ty,
are accepted by each corresponding Sc; with 1 < j < p.

Proof: <) Dependencies permit to prove that the merge
of local traces is accepted by the Global Automaton.!' For

101¢ is worth noticing that this technique is the one used to manage mo-
bility.

1Note that dependencies are sufficient to impose an ordering on mes-
sages; this allows us to relax the assumption that a global system clock
exists (see Section 4).

this aim we summarize the state of all filters in a given area
A,, (i.e., the state of the whole IDS system) as the state
of each local automaton (i.e., a p-tuple of states) and we
show that the IDS state has to go through states where the
following predicate is true.

Definition 10 Let A = (Q, qo, 1,0, P) be a Global Au-
tomaton and let ¢ € @ be a state of A. We say that the
IDS is in a state where the predicate 1)(q) is true if the fol-
lowing conditions hold: (i) every local automaton Ac of a
filter S in 39 is in the state q; (ii) every local automaton
of a filter in 34 is in a state where all exiting transitions are
labeled with incoming dependencies.

When 1(q) is true all local automata of the filters in 3¢
are in the state g, therefore exactly one filter S¢ € ¢
accepts its local invocation (e.g., !m_C_C7) by means of
the rule ¢’ = d¢c(q,!m_C_Cy). Once 3¢ has applied the
rule, all other filters in 3% move to ¢’ by applying the rule
q¢ =6c(q,?f(m,C)) (i.e., the rule labeled with a synchro-
nization dependency). A filter S¢v in S \ 8 defines a
transition exiting from ¢’ (e.g., ¢" = d¢c/(¢',!m_C'_CY)).
The state ¢’ is an enabling state of A since there is the ¢
entering transition ¢ = d¢c(q,!m_-C_Cy) and the ¢’ exit-
ing transition ¢” = d¢v (¢, Im-C'_CY), with C' # C’, and
q # ¢. Therefore, if we prove that all filters in 3¢ \ ¢
are in the state ¢ they move to the state ¢’ by applying the
rule labeled with the enabling dependency ? f(m, C),"? i.e.,
the IDS reaches a state where 1(¢’) holds. In this case we
say that the IDS performs one step from a state were ¢(q)
is true to a state were ¥ (q’) is true.

Starting from the initial state (i.e., all local automata are
in the state qp) the IDS performs step 1, ..., ¢ where the
predicates 1(qo), .. , ¥(g;) are true and at each step 7,
with 1 S _] S i, the rule qdji+1 = (SCJ. (qj,!mj,C’j,Cj’-)
is applied by S¢, € U%. The sequence of rules
gj+1 = 6c;(q5,'m;-C;_C}) are projections of A rules,
therefore, the Global Automaton A can accept the sequence
Im1-C1-C] ... !m;_C;_C! by applying the same sequence
of rules.

By induction on step 4, we prove that if the filter S,
applies the rule ¢; = d¢,_, (¢i—1,'m;—1-C;—1-C!_;) then
all filters in &7 are in state ¢; _1. This is sufficient in order
to prove that at step ¢ + 1 the predicate ¢(g;) holds.

The predicate 1(qg) is true when the sensors start to
work since all local automata are in state qg. More-
over at step 1 if the filter S, applies the rule ¢ =
3¢, (g0, 'mo-Co-C}) all filters in % \ I are in state qq.

At step ¢ the filter J¢, applies the rule ¢ y1 =
dc, (i, 'm;_C;_C?). By contradiction, we assume there ex-
ists a filter S in %+t \ S that is not in the state g;.

12Note that all other filters remain in the same state since the message
(i.e., the dependency ? f (m, C)) is related to an invocation exiting from gq.

120 -
100

80 \
\‘\
60 .« "
\ -
40 s \
N \
20 LN

61 76 100

Number of messages (%)

—\Vithout IDS
= = =Light Solution
— = Heavy Solution

Calculus power (%)

7

Figure 12. Average of the residual compu-
tational power depending on messages ex-
changed inside an Ay g .

The filter ¢ contains a ¢;41 exiting transition
Giv2 = 0c/(qiv1,'miy1-C' Ci 1), Sc, the rule g1 =
3¢, (i, 'm;-C;_CY). Therefore, ¢;11 is an enabling state of
A and ¢ contains the rule ¢; 11 = d¢r(qi, 7 f (mi, C;)).

Sev, at step ¢ — 1, cannot belong to the set I%-1 other-
wise by induction it would be in the state g; at step ¢. Let
the step j be the last state where ¢ is in state g;, i.e., for
all steps k, with £ > j, S does not belong to the set 3, .
Thus, the chain of rules gx+1 = dc(qi, 7f (Mg, Ck)) is
not labeled with invocations associated to C”. With this last
assumption the rule ¢;—1 = d¢(gk,) is defined in Acr.
Since all rules exiting from ¢;_; are labeled with depen-
dency related to ¢;_1, then ¢ between step k and 7 — 1
cannot move, i.e., at step ¢ — 1 itis in ¢;_1, and this contra-
dicts the hypothesis.

=)

LetT =T, @...®T;, be atrace accepted by A. We can
always find a schedule such that each sensor s; produces the
trace T, . O

8 Performance Evaluation

In this section we show how our method affects the
performance of the CoP protocol in terms of energy-
consumption and computed operations. The experiments
are performed running the powered protocol over hundreds
of random instances of mobile WSNs. We applied both
the heavy and the light solutions. We show the overhead
in terms of consumed energy and in terms of performed
instructions by the filtered sensors. The experiments also
show the estimated percentage reduction of the network
lifetime with respect to the original CoP protocol.

In Figure 12 we show the lifetime of the system inside
an Aygn. Considering each kind of message of the sen-
sors as a different set of instructions, we show the over-
head in terms of percentage of computational power loss.
The cost of ensuring the normal behavior of the protocol

120

" \
¥
80 ~
A —\Vithout IDS
60 S : ;
= = =Light Solution

- » \
- -
40 N— — = Heavy Solution
20 N LY : L] \

63 81

Number of messages (%}

Residual Energy (%)

100

Figure 13. Average of the residual energy de-
pending on messages exchanged inside an
Aven-

in terms of number of instructions by means of the light
solution is increased, on average, around 24%. The heavy
solution costs, on average, around 39%. Note that transmis-
sion/reception operations are much more expensive than lo-
cal computations. According to the consumption values ex-
pressed in [12, 23], transmitter and receiver electronics con-
sume an equal amount of energy per bit, namely 5n.J/bit.
While the energy to support the signal above some accept-
able threshold against power attenuation caused by the dis-
tance is just 100p.J/bit/m?.

In Figure 13 we show, on average, the percentage of the
draining of the sensors batteries inside an Ay gy. For the
heavy solution it is increased by around 37% while for the
light solution we obtained around 19%. Note that such com-
parisons are performed without simulating attacks. This
means that the original CoP protocol was able to perform
the desired (random) communications. In the case of at-
tacks, the original protocol can waste indeed much more
energy with respect to the “’safe” solutions. Consider for in-
stance a sensor that generates traffic without following the
right syntax of the messages or the right scheduling. While
in the original CoP protocol those messages are forwarded
till the sink, now they are just blocked by the local filters.

9 Conclusions

In the context of IDSs, we have presented a new frame-
work able to output distributed secure protocols in the field
of mobile WSNs. We started from a wired context where
usually IDS features are successfully applied. We pointed
out the main differences occurring when the environment
is wireless and mobile and we have generated a tool that
can deal with those properties. The tool takes as input the
specification behavior of the correct messages exchanged
according to a given protocol. It outputs a distributed IDS
that guarantees the desired properties specified by means of
a state machine, the Global Automaton. This automaton is

in fact split into several automata, one for each role that a
sensor can play. According to the required security level,
our tool can be tuned in such a way that it outputs from a
light to a heavy IDS distribution. Basically the process con-
sists in assigning to each sensor more or less control man-
agement among the traffic occurring over the network. In
order to better understand the process of the IDS distribu-
tion, we have applied our tool to a recent proposed protocol
for mobile WSNs, CoP [23]. We have shown how it is pos-
sible to wrap filters around the CoP sensors directly derived
from the automaton given in input which describes the de-
sired behavior of the system. The sensors are then synchro-
nized, when needed, by means of messages exchange. The
filters are then able to detect intruders locally by themselves
and by means of collaborations. Finally we have observed
the performance obtained by means of our tool in terms of
consumed energy and computed operations with respect to
the original CoP protocol. The experiments were evaluated
over random instances of sensor networks by assuming no
attacks occurring. Hence the comparisons were in favor of
the CoP protocol but they pointed out really good perfor-
mances of the safe solutions. The overhead was in fact of
around 20% for the light solution up to around 40% for the
heavy one. Indeed, in many cases, avoiding attacks also
decreases consumed energy since it locally prevents fake
traffic.

References

[1] A. Agah, S. Das, and K. Basu. Intrusion detection in sensor
networks: A non-copporative game approach. In IEEE NCA
2004.

[2] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing
with guaranteed delivery in ad hoc wireless networks. In
DIALM 1999.

[3] G. Brose, A. Vogel, and K. Duddy. Java programming with
CORBA third edition. WILEY, 2002.

[4] J. Deng, R. Han, and S. Mishra. Intrusion tolerance and
anti-traffic analysis strategies for wireless sensor networks.
In IEEE DSN 2004.

[5] R. Di Pietro, S. Etalle, P. Havinga, Y. W. Law, and L. V.
Mancini. LKHW: A Directed Diffusion-Based Secure Mul-
ticast Scheme for Wireless Sensor Networks. In WiSPr
2003.

[6] R. Di Pietro, L. V. Mancini, and A. Mei. Efficient and Re-
silient Key Discovery Based on Pseudo-Random Key Pre-
Deployment. In WMAN 2004.

[7] M. Ding, D. Chen, K. Xing, and X. Cheng. Localized fault-
tolerant event boundary detection in sensor networks. In IN-
FOCOM 2005.

[8] S. Doumit and D. Agrawal. Self-organized critically and
stochastic learning based intrusion detection system for
wireless sensor networks. In MILCOM 2003.

[9] W. Du, L. Fang, and PNing. Lad: Localization anomaly
detection for wireless sensor networks. In IPDPS 2005.

(10]

(11]

[12]

(13]

(14]

(15]

(16]

(17]
(18]

[19]

(20]

(21]

[22]

(23]

(24]

(25]

(26]

(27]
(28]

[29]

S.-T. Eckmann, G. Vigna, and R.-A. Kemmer. Statl: An
attack language for state-based intrusion detection. Journal
of Computer Security, 10:71-104, 2002.

Q. Fang, J. Gao, and L. Guibas. Locating and bypassing.
routing holes in sensor networks. In INFOCOM 2004.

W. Heinzelman, A. Chandrakasan, and H. Balakrishnan.
Energy-Efficient Communication Protocols for Wireless Mi-
crosensor Networks. In HICSS 2000.

J. E. Hopcroft and J. D. Ullman. Introduction to automata
theory, languages, and computation. Addison-Wesley pub-
lishing company, 1979.

P. Inverardi and L. Mostarda. A distributed intrusion de-
tection approach for secure software architecture. In EWSA
2005.

P. Inverardi, L. Mostarda, and A. Navarra. Distributed idss
for enhancing security in mobile wireless sensor networks.
In PCAC 2006.

P. Inverardi, L. Mostarda, M. Tivoli, and M. Autili. Auto-
matic synthesis of distributed adaptors for component-based
system. In ASE 2005.

C. Karlof and D. Wagner. Secure Routing in Sensor Net-
works: Attacks and Countermeasures. In SNPA 2003.

B. Karp and H. Kung. Greedy perimeter stateless routing
(GPSR) for wireless networks. In MobiCom 2000.

C. Ko, M. Ruschitza, and K. Levitt. Execution monitor-
ing of security-critical programs in distribute system: A
specification-based approach. /[EEE, 1997.

W.-H. Liao, J.-P. Sheu, and Y.-C. Tseng. GRID: A fully
location-aware routing protocol for mobile ad hoc networks.
Telecommunication Systems, 18(1-3), 2001.

N. Malpani, J. Welch, and N. Vaidya. Leader election algo-
rithms for mobile ad hoc networks. In DIALM 2000.

D. Maniezzo, K. Yao, and G. Mazzini. Energetic trade-off
between computing and communication resource in multi-
media surveillance sensor network. In MWCN 2002.

J. A. McCann, A. Navarra, and A. A. Papadopoulos. Con-
nectionless Probabilistic (CoP) routing: an efficient protocol
for Mobile Wireless Ad-Hoc Sensor Networks. In IPCCC
2005.

V. Mittal and G. Vigne. Sensor-based intrusion detection for
intra-domain distance-vector routing. In ACM CSS 2002.

L. Mostarda. Distributed Intrusion Detection Systems
for Secure Software Architectures. In Ph.D. thesis,
http://www.di.univagq.it/mostarda/sito/default.php 2006.
J.-M. Orset, B. Alcalde, and A. Cavalli. An EFSM-based
intrusion detection system for ad hoc networks. In ATVA
2005.

A. Perrig, J. Stankovic, and D. Wagner. Security in wireless
sensor networks. Commun. ACM, 47(6):53-57, 2004.

A. Vora and M. Nesterenko. Secure Location Verification
Using Radio Broadcast. In OPODIS 2004.

Y. Zhang, W. Lee, , and Y.-A. Huang. Intrusion detection
techniques for mobile wireless networks. Wireliless Net-
works, pages 545-556, 2003.

