A Distributed Intrusion Detection Approach for
Secure Software Architecture

Paola Inverardi and Leonardo Mostarda

Dip. di Informatica, Universita di I’Aquila,
Coppito 67100, L’Aquila, Italy
{inverard, mostarda}@di.univaq.it

Abstract. This paper illustrates an approach to add security policies
to a component-based system. We consider black-box-components-based
applications, where each component can run concurrently in a differ-
ent domain. The problem we want to face is to detect at run time that
a component might start interacting with the other components in an
anomalous way trying to subvert the application. This problem cannot
be identified statically because we must take into account the fact that a
component can be modified for malicious purposes at run time once de-
ployed. We propose a specification-based approach to detect intrusions at
architectural level. The approach is decentralized, that is given a global
policy for the whole system, i.e. a set of admissible behaviors, we auto-
matically generate a monitoring filter for each component that looks at
local information of interest. Filters then suitably communicate in order
to carry on cooperatively the validation of the global policy. With respect
to centralized monitors, this approach increases performance, security
and reliability and allows the supervision of complex applications where
no centralized point of information flow exists or can be introduced.

1 Introduction

This paper describes a specification-based approach to detect intrusions at ar-
chitectural level. We assume to have a black-box-components-based application
where all components run concurrently and interact each other exchanging ser-
vices. At architectural level, we speak about intrusions when legitimate com-
ponents perform unauthorized actions; e.g., a rogue client can be built by an
attacker that uses his authorizations to subvert the application.

Intrusions at architectural level may be detected by using static approaches,
e.g. by using model checking techniques. However, components can be dynami-
cally modified for malicious purposes and the statically validated properties can
be violated. Run-time tools monitoring for evidence of intrusions can provide a
solution to these problems. Nowadays, several run-time monitors are available:
they are referred to as Intrusion Detection Systems (IDSs), and their main task
is to analyze the observable behaviors of a system in order to recognize malicious
behaviors. The effectiveness of an IDS is usually measured in terms of: detec-

R. Morrison and F. Oquendo (Eds.): EWSA 2005, LNCS 3527, pp. 1687@ 2005.
(© Springer-Verlag Berlin Heidelberg 2005

A Distributed Intrusion Detection Approach 169

tion efficiency: the amount of intrusions that are correctly recognized; false
alarms rate: the amount of correct behaviors detected as intrusions.

There are three main types of IDSs detection techniques: misuse, anomaly
and specification-based. Misuse detection systems [1] are explicitly programmed
to recognize well-known attacks. These systems recognize intrusions by matching
the pattern of observed data with the set of predefined (intrusion) signatures.
They can perform focused analysis thus having a low false alarms rate. However,
they cannot detect unknown types of attacks, since it is not possible to spec-
ify a signature for a still unknown vulnerability. Furthermore, IDS complexity
grows with the number of well-known attacks. Anomaly detection systems as-
sume that an attack will cause deviation from normal behaviors, thus detection
can be done by comparing actual activities with known correct behaviors. Dif-
ferent approaches have been used to model normal behaviors: statistics-based
(2], rule-based [3], immunology-based [4]. The advantage of this kind of systems
is the ability of detecting novel attacks and the fact that it is not required spe-
cific knowledge about correct information flows. However, it is not easy to define
what is a normal behavior, to set up anomaly thresholds, to have a good de-
tection efficiency and moreover not all intrusions need to produce an anomalous
behavior. Specification-based systems [5] use some kind of formal specification to
describe the correct behaviors of the system. The detection of violations involves
monitoring deviations from the formal specification, rather than matching spe-
cific well-know attacks. The advantage of this approach is the ability to detect
previously unknown attacks at the expense of providing a formal specification
of correct information flows.

Besides the problems mentioned above, all the described approaches when
implemented suffer a number of further problems:

— the monitoring tools are subject to tampering, since they are software that
can be itself target of attacks.

— correct monitoring of points where there is a high level of information flow
may be problematic (loss of data);

— in complex systems no centralized point of information flow can exist, so
distributed solutions are needed;

— IDSs have to be scalable with respect to the number of components to be
monitored, i.e. augmenting the components number must not result in an
increased execution response time of the monitoring tool.

This paper presents a specification-based intrusion detection approach to face
intrusions at architectural level. The application to be monitored is composed
by black-box components that run concurrently in different domains. We as-
sume to know the services required/offered by each component that is name /
formal parameters / returned values, (i.e. the component interface), the topol-
ogy of the application in terms of potential interactions among components (the

! Tamper is a term to indicate ”any act that results in the improper alteration of the
application code.” [6]

170 P. Inverardi and L. Mostarda

connectors) and the specification of the acceptable behaviors the system has to
comply with. The latter is given by means of a language that defines the correct
behaviors of the system.

We propose a polynomial algorithm that combines the specification and the
architectural information in order to distribute the specification checking on the
component where the information to be supervised flows. More specifically, this
algorithm builds a set of local wrappers (filters), one for each component. Wrap-
pers locally monitor the component behavior and communicate with each other
in a peer-to-peer fashion to discover attacks scattered over several components.
Moreover, in order to address the attacks to the security measures filters are
able to detect filter tampering [6]. In the remaining of the paper we will use the
terms wrapper /filter interchangeably.

We choose a specification-based monitoring as opposed to anomaly base de-
tection since it permits to detect unknown attacks and reduces the false alarm
rate. Moreover, since our approach to intrusion detection is distributed it allows
the monitoring of complex applications where there is no central point of infor-
mation flow. However, the distributed approach also brings obvious overheads
in terms of message exchange.

The contribution of this paper is in proposing a way to automatically generate
a set of local filters (one for each component) that detect components dynamic
misbehavior. Our approach also permits to build a tamper resistant IDS [6],
i.e. an IDS which is resistant to modification and observation. The approach
we propose is architectural since it relies on architectural information about
components (interface) and connections (topology).

2 Related Work

Most of the advanced tools for intrusion detection send distributed data to a
centralized unit that relates them in order to detect violations. This centralized
design poses problems of: scalability, fault tolerance and security. Attacks to and
faults of the central unit can deactivate the monitoring of the distributed system.
An increasing number of sensors that forward data can cause loss of information
or increase the monitoring system reaction time.

Systems like NetSTAT [7], and Emerald [8], and GrIDS [9] try to solve the
above problems by means of a layered structure. Data are locally processed and
events that are part of distributed attacks are forwarded to an higher entity.
Although such systems try to address the problem of scalability, nodes close to
the root of the hierarchy can still be overloaded and they represent a single point
of failure or vulnerability.

CSM][10] faces these problems by means of a peer-to-peer design. It has no
centralized unit thus data are exchanged among peers to correlate them.

All the above mentioned tools recognize well-known kinds of attacks by means
of intrusion patterns (misuse based). Patterns are usually defined at networking
level and they are monitored by distributed sensors that sniff traffic. Such tools
have dedicated hosts and a management network separated from the one used by

A Distributed Intrusion Detection Approach 171

the application data. This choice is dictated by the fact that monitoring systems
are themselves software that can be tampered.

Our approach aims at lifting monitoring technology from the operating sys-
tem and network level to the application architecture level. We choose a peer-to-
peer design to address fault tolerance and scalability. Our wrappers reside on the
same host of the component code; thus we cannot rely on separated host /network
to avoid their tampering. However, in our monitoring tool filters that interact
with a tampered filter can detect its anomalous behavior.

The idea to monitor distributed systems at application level is not new. The
ORA organization[4] monitors applications in anomaly based fashion. They char-
acterize the normal behavior of the components interaction by using an immunol-
ogy approach. While they are able to detect previously unknown attacks, not
all intrusions deviate from normal behavior. We choose a specification-based
monitoring to overcome such problem and to reduce the false alarm rate.

The DIANA tool[11] uses a specification-based approach to monitor dis-
tributed programs in a decentralized way. Safety properties are specified on each
distributed process by means of a variant of a past time linear temporal logic.
Formula related to a particular process can refer to remote states of other pro-
cesses by using particular operators. Remote state information is delivered only
when there is an explicit interaction with that process. Therefore a process lo-
cally computes a formula by using the information of remote states it is aware
of. This logic seems not adequate to express security behaviors, since it may well
happen to monitor applications (part of) whose components do not explicitly
interact but their local states contribute to discover an attack.

Ponder [12] is an object oriented and declarative language mainly adopted
for Object-Oriented distributed systems. A set of agents deployed at different
hosts allow the monitoring. This language is specifically tailored to define roles,
subjects domains and policies. However agents could overload the host to be
monitored and they can be target of tampering. Breach on the security measures
can become a means to attack the distributed application to be monitored.

Our monitoring language defines the security policy and it is tailored to
express distributed correlation of information at architectural level. We deal only
with observable messages exchanged at architectural level. Given the policy to
monitor, filters are automatically generated and deployed.

3 Enforcement Mechanisms and IDSs Specification
Based

Earlier IDSs were only involved in monitoring activities and analyzing log files.
Today’s IDSs embed reactive utilities that are undertaken when an attack is
detected. For instance an IDS can react to an attack by terminating the ses-
sion, blocking or shunning the traffic, creating session log files or restricting the
accesses.

The time required to detect an attack and the time to react to such attack
are relevant parameters that characterize the effectiveness of an IDS. Ideally

172 P. Inverardi and L. Mostarda

an attack should be detected when it is in progress, this would allow either to
avoid the attack or to have a faster recovery. In the worst case an attack that is
terminated can be unrecoverable and important information can be lost.

Our specification based IDS captures every message exchanged among the
components of the system to be monitored. It verifies that the messages comply
with the formal specification, then it releases the messages. An attack is detected
when the IDS finds a mismatch between the observed messages and the formal
specification. In this case it reacts with the following default actions. The log
reaction in which all activities related to the attack are logged. The enforcing
reaction in which IDS releases every captured sequence verifying the formal
specification. In other words, if our IDS captures a sequence of messages that
verify the specification, then it deliveries the messages to the related components.
Therefore our monitoring system can be also seen as an enforcement mechanism

As defined in [13] enforcement mechanisms compare a formal specification
with the system steps. When there is a violation of the formal specification
an EM can either terminate the system execution or replace an unacceptable
execution step with an acceptable one. Any EM is assumed to be isolated from
the system and any input to the system must be forwarded to it.

However in a system composed by black-box components running in different
domains an EM might not have the right to terminate the system execution.
Therefore our enforcing mechanism replaces an unacceptable behavior with an
acceptable one.

We use the formal specification introduced in [13] to build our EM on the ba-
sis of an automaton that specifies the policies to be enforced. Our contribution
is the algorithm to automatically distribute the EM on each component that
composes the system. The distribution phase creates one filter for each compo-
nent. Each filter embeds only the part of control related to the local information
of interest. The use of the automaton is twofold: on one side it permits to re-
duce the overhead of messages exchanged among the filters. On the other side
it allows an acceptable tradeoff between detection time and expressiveness of
the language used to describe the security policies. As described in [13], relevant
security properties can be described by means of security automata. In the fol-
lowing section we categorize these security policies by means of definitions and
examples.

4 Violations at Architectural Level

Systems must embed security features to resist to attacks. However, nothing is
perfect. Even the best protected system must be monitored to detect security
violations. In a component based system, we characterize attacks as: interface
attacks and trace attacks. Interface attacks are carried out by requesting a service
with bad formatted inputs: anomalous inputs can produce a buffer overflow or
code injections, so that attackers can gain unauthorized accesses. Traces attacks
aim at subvert the correct communication among components. In the following

A Distributed Intrusion Detection Approach 173

we list some subcases of traces attacks. Sequence attacks are related to the order
in which messages are exchanged among components. For instance, a component
may access a service before performing authentication, or a component may
request exclusive access to a data base component without releasing it before
exiting. Synchronization attacks are performed by synchronizing components in
a suspicious way. This is the case in which two components require a write service
offered by a data base component. This could lead the system in an erroneous
state in which one of the component could not have access to the system any
more. Coordination attacks concern an anomalous cooperation of a component
to reach some global goal. For instance, in a collaborative writing system, a
component cannot cooperate with another component in order to read or write
a different piece of file. Distributed attacks are scattered over several sources.
These attacks look innocents when local-component traffic is considered, but
they result in a violation when data are related. An example of this type of
attacks is given by a chain of requests among components.

We detect violations in a component based application by checking that the
system behaviors match a well defined policy. Here, a policy is a set of rules that
dynamically regulate the behavior of a system neither changing the components
code nor requiring their cooperation. In particular, security policies define what
actions are permitted or not permitted, for what or for whom, and under what
conditions. Policies can define correct communications among components, ac-
cess and protection to components, authentication, monitoring of the responses
and correct use of services. To define policies, we provide an ad-hoc language
based on state machines. We also provide an algorithm to automatically generate
a set of wrappers, starting from the given policy and the system architecture.
Our wrappers are distributed one for each component and embed the part of
policies that define the component local interactions. Although wrapper can im-
plement confidentiality, we mainly focus on policies related to communications,
access, correct use of services, monitoring of the responses and protection of
components.

5 The Model of the System

At the architectural level, a system is viewed as composed by a set of compo-
nents communicating with each other. We consider distributed-black-box com-
ponents running concurrently and communicating either asynchronously and/or
synchronously. We know that messages exchanged among distributed compo-
nents can always be totally ordered [14], thus, a global trace of the system can
be obtained. In this Section, we will give the basic definitions which our frame
relies on. In all these definitions, we will assume that a global system clock ex-
ists. However, this assumption is needed only for modelling purposes, and it will
be relaxed in Section 6, where we describe how our filters distribution algorithm
works.

We focus on architectural system traces, i.e. on strings containing all messages
observed at architectural level. A message encodes information about the type of

174 P. Inverardi and L. Mostarda

communication, i.e. a request or a reply, the kind of service and its parameters
and the (returned) data. We also assume, without loss of generality, that all
messages are uniquely identified. Two requests of the same service from two
different components originate two distinct messages.

We introduce some definitions that will be used in the following.

Definition 1. Let T be a string mimams ... m;m;q1 T is an architectural
system trace if the following properties hold:

- Vmy € T my, codifies a service request to a component or a valid answer to
some request.

—if i < k then t(m;) < t(my), where t(m) denotes the global system time at
which the message occurred.

Definition 2. A sequence of messages my,my,my, ... mymy,, ., ... is a sub-

trace of some system trace mimoms ... mymq1 ... if lilals oo Liliy1 oL is @

subsequence of 1,2,3,... 4,1+ 1,...

Definition 3. Two subtraces s{s5s§ ... s¢si | ... and sbshsh ... 5252+1 ... are
. b

said to be distinct if and only if Vi, j si # s;.

Definition 4. Given two distinct subtraces T'1: s{s5s§ ... s{s{, | ... and T2:

shsh sh ... 5252-5-1 ... of T, a merge trace T1 ® T2 is a subtrace of T defined by
518283 ... 8jSjy1 ... where:

- 8. € T1® T2 if and only if s, € T1 or s, € T2
— for each s; and s; € T1UT?2 if t(s;) < t(s;) then s; appears before s; in
T1® T2

The definition of subtrace permits to define for each component C a compo-
nent local trace that is all messages locally sent/received by a component.

Definition 5. Let C be a component and T an architectural system trace. Tc =
m§ msmg§ ... mgmy, ;... is a component local trace of C if it is a subtrace of
T and each m$ is a message that codifies either a request or a provided service
of the component C.

In our model, the architectural system trace is produced by messages exchanged
among all the components. Each running component C; in the system defines a,
local to the component, subtrace T, . These sets of local traces constitute a parti-
tion of the architectural-system trace. In other words, if T: mymaoms ... m;m 11 . ..
is an architectural-system trace, {Tc,,Tc,, Tcs, - - -, 1o, } the sets of local traces
observed by the components of the system, then (), .., Tc, = 0 and the merge
of T¢, is equal to T'.

Our purpose is to analyze the system architectural trace T produced at run-
time to detect if T' contains subtraces that violate the defined policies.

We provide an ad-hoc language based on state machines to specify policies
(see [15]). It allows the definition of constrains on the input data of the services,

A Distributed Intrusion Detection Approach 175

on the ordering of the messages, on the synchronization among requests and on
the relations among messages scattered over several components(see Section 4).
The defined policy can establish when a component can access a service and it
permits to monitor the response of a component. In this paper we do not show
syntax and semantics of the language [15].

Our language permits to define the following automaton [13].

Definition 6. A secure automaton is 4-tuple A = (Q,qo,I,0) where: Q is a
finite set of automaton states, qo € Q the initial state, I is a finite set of input
symbols and 6(Q x I) — @ is a transition function.

Definition 7. A secure automaton A = (Q,qo,I1,d) parses a sequence T =
mimems ... MiM;y1 ... one symbol at a time from left to right. Let ¢;_1 € Q
be the current state of A and let m; be the next symbol to read. A accepts m; if
there exists a transition rule 6(q;—1,m;).

Definition 8. Let A = (Q,qo,I,6) be a secure automaton and T = mimamsg

.MMyt - .. be a sequence of symbols in I. Let qo be the starting state of A
and my be the first symbol to read. A accepts the sequence T if for each current
state q;—1 and next symbol m;, A accepts m;. q¢; = 0(qi—1,m;) is the new state
of A and m;y1 the next symbol to read.

Definition 9. The language £(A) recognized by A = (Q, qo, 1, 0) is composed by
all sequences of symbols in I accepted by A.

This acceptance criterion permits to recognize finite and infinite sequences
of symbols(see [13]).

In the context of component based systems, the 4-tuple of the secure au-
tomaton is constrained by the following rules. I is a finite set of symbols that
represent messages at architectural level. Messages are of the form: !s denoting
outgoing message and 7s incoming message from/to a component, respectively. &
represents the policy that defines the correct messages exchange among compo-
nents. We call such secure automaton: Global Secure Automaton. Global, since
the alphabet I is a subset of all messages exchanged among components.

In Figure 1, we show a component-based system composed of three different
types of components. A database component C'1 can accept a login event which
corresponds to an authentication service, encoded as ?login. The message ! fail
models a failure answer that C'l can send to a non-authorized client while the

?fail

?login
Cl Ifail 2
lok

»

login

.?logm e !fail

lok

<0<

Fig. 1. Architectural view of the system Fig. 2. Global secure automata

llogin
C3 2fail
20k

»

'p

176 P. Inverardi and L. Mostarda

message lok is sent to an authorized client. A printer component C2 can accept
incoming requests of print encoded as 7p. A client component C3 requires login
and print services encoded as messages llogin and !p, respectively and waits for
incoming messages of successful /unsuccessful login encoded as 7ok /? fail.

The global secure automaton (see figure 2) expresses a security policy in
which a !login request to the authentication component C1, once received, can
be followed by either !fail or lok messages. The service !p can then be required
only after a reception of an 7ok message.

The global secure automaton permits to monitor architectural system traces
(see Definition 1). It performs a state transition for each observable message of
the system and detects an attack when a message is not accepted.

Our main purpose is to automatically distribute the global secure automaton,
so to monitor the distributed-component-based application in a peer-to-peer
fashion. An algorithm produces a set of local secure automata that are assigned
one for each component. Therefore, a local secure automaton can only observe
the component local trace (see Definition 5) of the component it resides on.
After the generation process each local secure automaton is implemented as a
wrapper (filter) that envelops the component it supervises.

Notice that we consider deterministic automata. This permits to simplify
the distribution algorithm and to reduce synchronization messages among fil-
ters. This choice is not a limitation, since, a non-deterministic automaton can
be always translated to a deterministic automaton that accepts the same lan-
guage. Moreover, we recall that a property is an high level description of the
constraints imposed on the system components communications and not a com-
plete description of the component-based-application behavior. In the remaining
of the paper the notation m®: € C; stands for messages locally sent /received by
the component C;.

6 Local Automata Generation

The monitor is conceived as a logically centralized process that makes a transi-
tion for each observable event of the system. A specification-based IDS can use
the global secure automaton to realize the centralized monitoring by recogniz-
ing the languages defined by the security policies. Whenever these policies are
violated an alarm is raised.

The algorithm to distribute the global secure automaton creates one filter
for each component. The filter on a component C' (in the following, we will
denote it by S¢) implements a local secure automaton which, looking at the
component local trace T¢ (see Definition 5), detects a violation of the policies
expressed by the global secure automaton. Obviously, by considering only the
local-component trace of C m{m$my ... mkcmkc+1 ... is not sufficient to locally
detect a violation of the policy. Therefore, S¢ has to parse an enriched trace
that also contains context information provided by other filters. After the local
parsing, S¢ can provide context information to other filters that need it. We
call such information exchanged among filters dependency information.

A Distributed Intrusion Detection Approach 177

Definition 10. Let ¢ be the filter of the component C. Dependency informa-
tion is of the form f(m,D) or 7f(m’,S) where D and S range on the name
of the application components. The message ! f(m, D), outgoing dependency, is
sent by S¢ to filter Sp in order to communicate that the C-component mes-
sage m has been observed. The message 7f(m’,S),incoming dependency, is an
incoming information sent by filter Sg. With this information &g communicates
to S that it has observed a S-component message m’.

Dependencies ensure that the merge (see Definition 4) of local-component
traces result in a global trace of the system which satisfies the secure property
expressed by the global-secure automaton. Hence, dependencies are a way to
synchronize filters and to detect the violation of policies. Note that dependen-
cies are sufficient to impose an order on messages; this allows us to relax the
assumption that a global system clock exists (see Section 5).

A filter S¢ captures both local-component message and incoming dependen-
cies (?f(m,S)) and outputs the outgoing dependencies (!f(m, D)) that will be
used by other filters. In order to generate local automata we combine software
architecture information with the global secure automaton. This combination is
twofold: on one side permits to build local secure automata by projecting each
transition of the global secure automaton (labelled with an architectural mes-
sage, see Definition 6) on the component that accepts/sends the message. On the
other side, it permits to enrich local secure automata with transitions that an-
alyze and produce dependencies. Connections among components may be used
to route context information messages through components filters . Referring
to the example in Figure 1 whenever ¢, needs to send a message to S¢, it has
to route the message through the filter of Cjs.

Informally, the algorithm for filters generation can be described as follows:

1. Local automata generation: For each component C, the set of automata
A1 As.. A, is generated. These automata are the parts of the global secure
automaton that processes events concerning interactions of the component
C.

2. Dependencies generation:Let A;A,... A, be the set of automata related
to the component C'. This step provides the needed context dependencies
to ensure a complete and correct local message parsing. Furthermore, it
connects the local automata Ay As...A, . of C in order to build a complete
local secure automaton.

In the following we informally describe the algorithm and we illustrate its appli-
cation by means of the example shown in Section 5. A more complete description
is available in [16].

2 The need of routing depends on the communication infrastructure on which the
software architecture is built. For instance a component-based application may use
communication layers that enable components to communicate with each other. In
this case, a filter could send messages directly to another, which would avoid the
overhead of routing messages via other filters.

178 P. Inverardi and L. Mostarda

6.1 Local Automata Generation

Given a global secure automaton A = (Q, qo, I,9), this step builds, for each
component C of the system, a local secure automaton IS¢ = (Qc, qoc, Ic,dc).
Informally S¢ is obtained by considering each rule ¢ = d(g, m) defined in A.
In the case that m is a C-component message such rule is reflected in a So-rule
¢1 = 6c(g,m), the states ¢,q; are added to Q¢ and the message m is added to
Ic. Therefore in the following we use two conventions: one is that we use exactly
the same name ¢ both for a state of the global automaton and the state of the
filters where ¢ has been projected. The other one is that, when it is clear from the
context, we indifferently use either the rule ¢’ = 6(¢, m®) or its Jc-projection
q = dc(q,m%).

Looking at the global secure automaton A, the sequence of interactions that
happen locally on a component C' originates a local secure automaton S¢.
In other words, S¢ does not include interactions among components that do
not involve C'. Therefore S¢ can result in a set of disconnected sub-automata
AjAs ... A, ., each one modelling local interactions on C' separated by interac-
tions among different components.

The local automaton generation step is done locally to the component C'. The
time complexity is O(]d|) where |d] is the number of transitions of the global se-
cure automaton. No new states are added, then the space complexity is linear.

Referring to the example in Section 5, after the local automata generation
step the global secure automaton of Figure 2 is partitioned on each component
of the system. Figure 3 shows such partition. For instance parts of the global
automaton related to messages: Tlogin, lok and !fail constitute the local secure
automaton on component C'1, given that such messages are locally observed on
that component. The same discussion can be done for the local secure automata
of the components C2 and C3.

These local secure automata are not sufficient to validate the related compo-
nent traces, therefore the next step shows how to add dependency transitions.
Besides synchronization among local secure automata, dependencies are also
used to link the disconnected automata A; As ... A, of each ¢ (if any).

6.2 Dependencies Generation

The dependencies generation step takes as input the local secure automata and
it adds dependencies information. Such information enforces the synchronization

!fail ?fail

2login
e ° e ®
@@ @ @ @
1ok) llogin 20k
q
?login 9 !login @
> ’ c3 2fail '
Cl fail 2 fai
1ok 20k

'p

Fig. 3. Local automata generation

A Distributed Intrusion Detection Approach 179

among the interested set of filters, so that merging the component local traces
(see Definition 4) results in a trace accepted by the global secure automaton.
For space reasons, we cannot provide a complete illustration of the dependen-
cies generation step. Therefore we divide it into three phases and we sketch the
basic idea of each phase. A complete and formal treatment of the whole step is
described in [16].

Phase 1. In phase 1 the dependencies generation step provides the basic de-
pendencies that are needed to synchronize a set of filters so that exactly one of
them acquires the right to accept a local-component message.

A global secure automaton A = (Q, qo,I,d) can define a set of transitions
exiting from a state g, with ¢ € Q. We consider the case in which from ¢ two
transitions exit: ¢; = 6(¢, m") and ¢z = 6(g, m®?) with m©* € Oy and m®? €
Ca, and ¢ # q1 # ¢2.

Local automata generation (see Section 6.1) ensures that the rules ¢ =
5(q,m®) and g = §(q, m“?) are projected to the filters S¢, and ¢, respec-
tively. Phase 1 adds the rules 1 = 6¢, (¢,!f(m©,Cy)) and g2 = ¢, (q, 7.f (m©2, Cy)
to S¢,, and the rules go = ¢, (q,!f(m2,C1)) and ¢1 = 6¢,(q, 7f(mC,C1) to
Se,-

From the point of view of A if it is in the state ¢ then either the transition
@ = 6(qg;m) or go = §(q,m?) can be applied. From the filters point of
view such possibility is lost since these rules are independently applied by the
two different filters residing on the two different components. The rules ¢ =
5o, (¢, f(mC,Cy)) and ga = 6¢, (g, f(m2,C1)) are a means used by the filters
to overcome this problem. Suppose that both filters 3¢, and J¢, are in the state
q. Each one of them can observe its local message, m©*, m®? respectively. In a
single computation only one of them will participate in the (global) computation
by parsing its message and leading to the state successor of ¢, that is either ¢;
or qo. However as far as the local automata S¢, and ¢, are concerned no
matter who parses the message they must both move to the defined successor
state, that is they will both reach either ¢; or ¢2. For example, if ¢, observes
the message m©", it alerts S¢, of this observation by sending the dependency
message | f(m©,Cy) and waits for an acknowledgment. If S¢, receives the S,
acknowledgement, then this means that it has got the right from J¢, to move
on and both filters move to state ¢;. S¢, by consuming the message m© by
means of the rule ¢; = (g, m"). S¢, by consuming the dependency message
lf(m©,Cy), by means of the rule ¢; = d¢,(q,?7f(m,C1). In the case that
both filters, at the same time, send the dependencies with each other then a
synchronization protocol(see [16]) establishes that exactly one filter acquires
the right to accept a component local message.

Phase 1 of the dependencies generation step considers a state g of a filter S¢
and its purpose is twofold: on one side it adds a set of transitions exiting from ¢
labelled with outgoing dependencies. On the other side it adds a set of transition
exiting from ¢ labelled with incoming dependencies. The outgoing dependencies
are needed to know the filters with whom ¢ has to synchronize, in order to ac-

180 P. Inverardi and L. Mostarda

quire the right to parse a C-component message that labels a transition exiting
from q. We call these outgoing dependencies synchronization dependencies and
the protocol used by the filters to exchange these dependencies synchronization
protocol. (see [16] for more details).

Phase 2. Phase 2 of the dependencies generation adds dependencies that are
used by a filter to enable the parsing of local-component messages of other fil-
ters. A global secure automaton A can define a chain of rules ¢; = §(¢q, m©*)
and ¢z = 0(q1,m®?), with m© € Cy, and m®? € Oy, and q # ¢;. The local
automaton generation ensures that the rules ¢; = 6(g, m“") and g2 = (g1, m®?)
are projected on the filters S, and J¢,, respectively. From the A point of
view, this chain of rules defines a constraint among the messages m* and m©2.
That is, the message m®* must be accepted before the message m©?. However,
from the local filters point of view, this constraint is lost, since the chain of
rules is divided onto the filters S¢, and S¢,. Therefore, the filter S¢, can au-
tonomously accept the message m®? before the message m© is accepted by the
filter S¢,. The problem is solved by adding dependencies. The dependencies
generation adds to S¢, the rule g1 = d¢,(g,!f(m,Cy)) and to ¢, the rule
a1 = 6c,(q, 72f(m®, Cy). Therefore ¢, can move to the state q;, by means of
the rule ¢, = dcr (g, ?f(m©*,C1)). However this rule can be applied only when
the filter ¢, sends the outgoing dependency !f(m®t,Cy). This is a means for
filter S¢, to impose the right ordering among the messages m©* and m®2. We
call such outgoing dependencies enabling dependencies, since they are used to
enable the local-filter parsing when there is the right context condition.

Phase 3. Note however that, after the addition of such dependencies, some local
automaton can still be disconnected. Phase 3 on one side links together the local
disconnected automata A; A, ... A, through € moves. On the other side it sets
the initial state of all local automaton as the initial state of the global secure
automaton.

The time-complexity to produce each local-automaton is O(|5]?) where |d] is
the number of transitions of the global secure automaton. The local dependencies
generation does not add states with respect to the states of the global-secure
automaton A. Therefore, the space-complexity is linear.

Figure 4 outlines the basic activities of a filter &¢ that is in a state ¢. In 4.1
a background thread buffers every C-component message in the message buffer
and every incoming dependency in the dependencies buffer. In 4.2 S¢ picks up
a C-component message m from the message buffer, if any. Steps 4.3-4.5 log and
refuse m if it is recognized as an attack. On the contrary in 4.6 the filter S¢ tries
to parse m by means of the rule ¢1 = dc (g, m). In 4.6b it starts the synchroniza-
tion protocol in order to acquire the right to parse the message m. In the case
that S¢ gains the right it applies the rule g1 = d¢ (g, m) and sends the enabling

A Distributed Intrusion Detection Approach 181

1. a background thread buffers every C'-component message in the message buffer and every incoming dependency
in the dependencies buffer.
2. S -main process picks up a C-component message m from its message buffer, if any.
3. if m is not a C-local component message then it releases the message and logs a warning.
4. if m is a C-local component message that cannot be accepted in a successive state of S then it trashes the
message and raises an alarm.
5. if m is a message that cannot be accepted in the state g it logs a warning and it puts back the message on the
buffer.
6. if m can be accepted by means of the rule g1 = §c (g, m) then
(a) if (g7 = q) then it releases the message m and goes to step 7.
(b) if (g1 # q) then it starts the synchronization protocol.
(c) if it acquires the right to accept the message m then it sends the enabling dependencies, it applies the
rule q1 = 8¢ (g, m) and goes to step 7.
(d) if S/, with Sy # S acquires the right to parse the message m’ then
—" it puts back m on the local-component buffer.
— it retrieves the rule ¢/ = §C(q,?f(m’, C’)) and it moves without non-local message observation.
7. it picks up an incoming dependencies from its local-dependencies buffer that can be accepted, if any.

Fig. 4. Sc-filter behavior in a state q

dependencies. Otherwise it moves through incoming dependencies. Finally step
4.7 checks and applies the dependencies that are stored in the dependencies
buffer.

In the remaining of the paper we make use of a set of assumptions that, al-
though not mandatory, allow the simplification of the presentation. We assume
first of all that messages among filters are not lost and that messages sent be-
tween local filters are received in the same order they are sent. When drawing
the local secure automaton multiple transitions from the same source and target
are indicated by using one arrow with multiple labels.

We use the example in Section 5 to illustrate the whole approach. Figure 5
shows the local automata related to components C'1, C2 and C3 as produced by
the dependencies generation. Initially all local filters have state go. When the
component C3 sends a !login request to C1 the local secure automaton Jcg
captures the request. It observes that a !login message can be accepted then
it sends the !f(llogin,C1) dependency and the llogin message to C1. Finally,
Ses moves to state g;. The local filter on C1 receives the incoming message
1f(Nogin,C1) sent by Ses and it changes its state to g, since in gqq it is wait-
ing for an incoming message 7 f(!login, C3). In state ¢; the filter on component
C1 can accept the incoming ?login message and it changes to the g» state. We
can observe that component C2 can provide a print service ?p only after some
external events happened. These events are provided by C3 after a correct au-
thentication is performed. At run time an attack is detected if a local automaton
cannot accept a component local message, or if a local automaton is not able

Ifail
1£(!fail,C3)

TE(tlogin,C1) _

710giT> @
?f(ir.,cf(!ok,cgf(?}?)i)cf(!p’c 7(?p,C2) ?f(lok,C1)
ol w GG, 6
-

7f(!fail,C

70k
?login p 1f(1p,C2) login
!fail c2 Cc3 ?fail
lok 7ok
'p

Fig. 5. Dependencies generation

182 P. Inverardi and L. Mostarda

to accept an external context information. In both cases, the information stored
inside the filter gives details about the violation, providing a means to detect the
source of attack. For example, in Figure 5 if component C3 requests the service
Ip without previous !login, the local filter S¢3 captures the message and detects
an error because it was waiting for a llogin request.

The overhead of messages generated by the filters is strictly related to the
policies defined in the global secure automaton. A local automaton adds depen-
dency messages when non-interacting components behavior has to be related. Let
q be a state of the global secure automaton. Let mims ... m, be n messages,
related to n different components residing on n different hosts H; Hs ... H,,. Sup-
pose that the messages mims ... m, label a transition exiting from the state q.
In the worst case when a local secure automaton on the host H; moves from a
state ¢ to a state ¢/,with ¢ # ¢/, then at most n dependencies can flow on the
distributed system. In practice dependency synchronization messages are rela-
tively small in size and, depending on the system architecture, it is possible to
bound the number of the messages exiting from a state g related to different
components/hosts.

Correctness and completeness of our algorithm derive from the following the-
orem that is described in [16].

Theorem 1. Let A = (Q,qo,I,0) be a global secure automaton, {C1,Cs, Cs

..C; ...} aset of components. Let 3¢, be the automaton related to component
C; as produced by the algorithm. A accepts an architectural trace mimaoms
co.mymig1 ... if f all component traces T, are accepted by S¢;.

As discussed in Section 1 the main problem of security tools is tampering.
Intruders can blind the security measures, so to violate the policies or use secu-
rity measure against the system itself. In our approach, a component changing
behavior is detected but problems can still arise if an intruder decides to at-
tack by modifying both the filter’s and the component’s behaviors. Referring
to (Figure 5), the intruder can change C3 so that it requests a printer service
?p without no previously llogin and can change accordingly filter Se3. Ses
is therefore changed so that it does not have anymore a !login transition and
the related signaling message, leaving only the transition from ¢s to gg. In other
words, the component and its related filter are changed to provide a different
behavior. When C3 sends a !p request, the local filter o3 does not detect any
violation. The filter on component C2, S¢q, receives the correct ! f(!p, C2) signal
and provides the printer service. The solution to this problem is to add further
dependencies on the local secure automaton. For instance, Sco can be enriched
to rely on the context information that the 7login message took place on filter
Se1- A new step (tampering step) can use local automata as generated by the
dependencies generation step to add further dependencies. In other words this
means to add redundant context information so that Theorem 1 is still true and
both a component and related filter tampering can be detected.

A Distributed Intrusion Detection Approach 183

7 Conclusion and Further Work

We have presented a distributed specification-based approach to detect intru-
sions at architectural level. Its peer-to-peer design allows the supervision of
complex applications where no centralized point of information flow exists or
can be introduced. This distributed solution presents several advantages with
respect to centralized monitors. It is scalable, since the monitoring of an increas-
ing number of components does not rely on a single point of data correlation,
so to avoid problems of detection reaction time, loss of data and scalability. It
provides an approach to face the problem of security measures tampering. A fil-
ter can detect a component that violates the policy, and other filters control and
analyze the filter behavior to discover its tampering. The disadvantage of our
approach concerns the potential message traffic increase due to the dependency
messages exchanged among filters. This is the inevitable cost to pay to achieve
a filters distribution which is correct and complete with respect to a centralized
approach. However this overhead depends on the software architecture of the
system to monitor and on the adopted security policies. Thus the suitability of
the approach has to be measured taking into account these two factors.

At present our research proceeds in three directions. A prototypal version
of the tool to generate local filters starting from a global secure automaton
specification has been developed [15]. The approach has been applied to an
industrial component-based application [17]. We are refining and extending the
approach considering cases in which more than one component and the related
filters are changed at the same time. We are also considering the use of context
free languages to specify policies.

References

1. T.Eckmann, S., Vigna, G., Kemmer, R.A.: Statl: An attack language for state-
based intrusion detection. Journal of Computer Security 10 (2002) 71-104

2. Javitz, H.S., Valdes, A.: The nides statistical component description and justifica-
tion. Technical report - Columbia University (1994)

3. Vaccaro, H., Liepins, G.: Detection of anomalous computer session activity. In
proc. of the 1989 Synopsium on Security and privacy (1989) 280-289

4. Stillerman, M., Marceau, C., Stillman, M.: Intrusion detection for distributed
applications. Communications of the ACM (1999)

5. Ko, C., Ruschitza, M., Levitt, K.: Execution monitoring of security-critical pro-

grams in distribute system: A specification-based approach. IEEE (1997)

Aucsmith, D.: Tamper resistant software: An implementation. LNCS (1997)

Vigna, G., A.Kemmer, R.: Netstat: A network-based intrusion detection system.

In proc. of the 14th Annual Computer Security Applications Conf. (1998)

8. A.Porras, P., G.Neumann, P.: Event monitoring enabling responses to anomolous
live disturbances. In Proc. of 20th NIS Security Conference (1997)

9. Snapp, S.R., Dias, J.B.G.V., Goan, T., Heberlein, L..T., Ho, C., Levitt, K.N.,
Mukherjee, B., Smaha, S.E., Grance, T., Teal, D.M., Mansur, D.: Dids (distributed
intrusion detection system) - motivation architecture and early prototype. In proc.
14th National Security Conference 1 (1996) 361-370

184

10.

11.

12.

13.

14.

15.

16.

17.

P. Inverardi and L. Mostarda

White, G.B., Fisch, E.A., Pooch, U.W.: Cooperating security managers: A peer-
based intrusion detectionn system. IEEE Network (1996) 20-30

Sen, K., Vardhan, A., Agha, G., Rosu, G.: Effecient decentralized monitoring of
safety in distributed system. ICSE (2004)

Dulay, N., Lupu, E., Sloman, M., Damianou, N.: A policy deployment model for
the ponder language. IM2001, Seattle,IEEE Press. (2001)

Schneider, F.B.: Enforceable security policies. ACM Trans. on Information and
System Security 3 (2000) 30-50

Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21 (1978) 558-565

Mostarda, L., Inverardi, P.: Distributed detection system for secure soft-
ware architectures (desert) - a peer-to-peer tool for intrusion detection.
http://www.di.univaq.it/mostarda/sito/default.php (2004)

Mostarda, L., Inverardi, P.: A distributed intrusion detection approach
for secure software architecture - extended version. technical report
http://www.di.univaq.it/mostarda/sito/default.php (2005)

Inverardi, P., Mostarda, L., Tivoli, M., Autili, M.: Automatic synthesis of dis-
tributed adaptors for component-based system. Submitted for publication (2005)

	Introduction
	Related Work
	Enforcement Mechanisms and IDSs Specification Based
	Violations at Architectural Level
	The Model of the System
	Local Automata Generation
	Local Automata Generation
	Dependencies Generation

	Conclusion and Further Work
	References

