
Towards a uniform ontology-driven approach for
modeling, checking and executing WSANs

Claudia Vannucchi, Diletta Romana Cacciagrano, Rosario Culmone, Leonardo Mostarda
Computer Science Division

School of Science and Technology, University of Camerino
Camerino, Italy

Email: Claudia.Vannucchi,Diletta.Cacciagrano, Rosario.Culmone, Leonardo.Mostarda @unicam.it

Abstract—Wireless sensor and actuator networks (WSANs)
refer to a group of sensors and actuators linked by wireless
medium to perform distributed sensing and acting tasks. Be-
ing reactive systems, quite often WSANs are programmed by
Event-Condition-Action (ECA) rule-based languages. Because
of potential interactions among the rules themselves and their
surprising effects on the system behaviour, it is quite difficult to
ensure a safe behaviour of a WSAN at design time. This paper
proposes a semantic-driven approach for modeling, checking
and executing ECA rule-based WSANs. The approach can be
considered uniform since any of the previous phases works on a
common ontology-based WSAN model integrating and linking
three different system views: the static one (i.e., sensor and
actuator types in the WSAN, description of its environment,
deployment information etc.), the dynamic one (i.e., a set of
ECA rules programming the given WSAN) and the behavioural
one (i.e., a finite state machine (FSM)-based representation
of the WSAN behaviour w.r.t. the given dynamics). We show
how the proposed approach provides an agile verification of
system properties involving (and also mixing) static, dynamic
and behavioural concepts. In particular, with regard to the
behavioural view, we will focus on properties like consistency,
correctness and termination. In order to better explain our
approach, we present a home automation case study.

I. INTRODUCTION

With the rapid advancement in wireless communications
technology and micro-electromechanical systems technology,
the wide deployment of large-scale wireless sensor networks
(WSNs) has been made possible [1]. Due to their features of
reliability, accuracy, flexibility, cost-effectiveness and ease of
deployment, WSNs are used in a wide range of applications
(e.g., environment monitoring, health care, etc.). At the same
time, there are an increasing number of applications that
require the use of actuators along with sensors [2]. This
occurs when the network system needs to interact with the
physical system or the environment via actuators. Actuators
transform an input signal into an action upon the environment.
Typical examples of actuators are robots, electrical motors, and
humans. For these reasons, wireless sensor actuator networks
(WSANs) are emerging as the next generation of WSNs [2].
WSANs refer to a group of sensors and actuators linked by
wireless medium to perform distributed sensing and acting
tasks [3]. Differently from WSNs, WSANs are capable of
changing the environment and physical world. More precisely,
sensor nodes are used to gather information from the envi-
ronment, and actuator nodes are used to change the behavior

of the environment [2]. WSANs behave like reactive systems
and, for this reason, Event-Condition-Action (ECA) rules-
based languages are often used in order to program them. On
the one hand, ECA rules provide for high-level and flexible
description for WSANs; on the other hand, it is well known
that ECA rule-based programming is an error-prone process
[4], due to the possibility of complex interactions among
rules. Very often such interactions introduce, in the system
dynamics, behavioural errors which are often detected only at
run time (i.e., when a WSAN has been already programmed
and deployed). For this reason various formal methods have
been suggested (e.g., [4] approaches based on Petri Net (PN)
[5], SMV [6] and SPIN [7]). However, they have not been
tailored to the context of WSANs.

Contribution of the paper. This paper aims to contribute in
this direction, proposing a semantic-driven approach for mod-
eling, checking and executing ECA rule-based WSANs. The
approach can be considered uniform since any of the previous
phases works on a common ontology-based WSAN model
integrating and linking three different system views: the static
one (i.e., sensor and actuator types in the WSAN, description
of its environment, deployment information etc.), the dynamic
one (i.e., a set of ECA rules programming the given WSAN)
and the behavioural one (i.e., a finite state machine (FSM)-
based representation of the WSAN behaviour w.r.t. the given
dynamics). We show how the proposed approach allows us an
agile verification of system properties involving (and mixing)
static, dynamic and behavioural concepts. On the one hand, the
type of proposed approach presents numerous benefits arising
from the ontology features (e.g., interoperability, knowledge
reuse and information integration with automatic validation).
On the other hand, the integration of static, dynamic and
behavioural aspects implements a monolithic model that re-
duces inconsistency problems. Furthermore, relating ECA rule
semantics to that one of FSM-based models, widely used for
verification and execution, we obtain a framework supporting
both compilation-time analysis and run-time enforcement of
coordination of rules.

A uniform ontology-based model integrating dynamic and
behavioural aspects of a WSAN also allows us to analyze the
system outcome after its execution. For instance, it would be
possible to run queries for extracting information about “which



rules have been fired in which states”, “what the emergent
behaviours of the whole system have been ’ ’, as well as
statistics concerning system rules and states. Ontology features
make such functionalities dynamic and modular. Furthermore,
the behavioural component in the semantic model can drive
both the execution/simulation phase and also the debugging
one of the modeled system.

Plan of the paper. The remainder of the paper is structured
as follows: Section II presents a review of the literature
concerning the topics addressed in this work. Section III
provides a description of the proposed approach. Section IV
illustrates how the proposed approach can be useful for design-
ing and programming a home automation WSAN, ensuring its
behavioural “correctness” at design time. Finally Section V
provides a conclusion and outlines future work.

II. SEMANTIC APPROACHES FOR WSANS AND REACTIVE
RULES IN LITERATURE

In general, expressiveness requirements in reactive system
representation include the ability to represent hierarchical
structures, complex relationships among context instances and
complex definitions based on simpler ones, usually using
restrictions that may be spatial or temporal [8]. Ontologies
have shown to be one of the most promising tools to achieve
these goals, since they provide a way to represent and share
knowledge by using common vocabulary, to separate declara-
tive and procedural knowledge, to make information machine
readable and processable, as well as to derive implicit infor-
mation from explicit context data. In a scenario characterized
by heterogeneous devices connected together into a network,
ontologies are becoming widely used to describe the domain
and achieve efficient interoperability of information system
[9], [10].

There is a broad variety of ontologies and vocabularies
to model WSANs and, more in general, domotic/ambient
intelligence systems.

A first example is found in [11], where an ontology is
implemented for both formally expressing the domotic envi-
ronment (e.g., sensors, gateways and network) and providing
reasoning mechanisms. This reasoning allows to supports auto-
matic recognition of device instances and to verify the formal
correctness of the model. The DogOnt ontology supports
device/network independent description of houses, including
both controllable and architectural elements. It is currently
adopted to provide house modeling and reasoning capabilities
to a domotic gateway called DOG (Domotic OSGi Gateway),
a coordination framework for supporting dynamic module
activation, hot-plugging of new components and reaction to
module failures [11]. The combination of DOG and DogOnt
supports the evolution of domotic systems into IDEs by
providing means to integrate different domotic systems, to im-
plement inter-network automation scenarios, to support logic-
based intelligence and to access domotic systems through a
neutral interface. In this context, a third component of DogOnt,
namely DogOnt queries supports runtime control of the IDE.

Within DomoML, DomoML-env is a vocabulary through
which is possible to define physical resources of a domestic
environment [12]. Resources are described through a stan-
dardized mark-up language based on RDF/XML, which any
appliance constructor (or integrator) can use to describe and
represent its own products. The adhesion to the DomoML-env
can guarantee to different constructors that their appliances
will be able not only to communicate with other DomoML-
env compliant devices, but also to share semantics mainly
about their functionalities, and interoperate on more complex
integrated operations.

A previous work with relevant objectives about pervasive
computing is the SOUPA Project [12], where a Standard
Ontology for Ubiquitous and Pervasive Applications (SOUPA)
is defined and expressed using the Web Ontology Language
(OWL). It includes modular component vocabularies to rep-
resent intelligent agents with associated beliefs, desires, and
intentions, time, space, events, user profiles, actions, and
policies for security and privacy [13] .

In [14] an ontology for enabling Ambient Intelligence in
a Smart Building, named BOnSAI (Smart Building Ontology
for Ambient Intelligence), is proposed. The ontology extends
and benefits from existing ontologies in the field, but also adds
classes needed to sufficiently model every aspect of a service-
oriented smart building system. There exist already domain-
independent upper ontologies (not officially proclaimed stan-
dards yet) that enable the vision of Semantic Web services. The
ontology is domain-dependent and specializes such ontologies
in order to model the domain-specific concepts of the Ambient
Intelligence application.

Most of the above ontologies are used only for integration
over various domains. Furthermore, any of them provides a
semantic model of the system focusing only on its static
features (e.g., system and context components, deployment
information, etc.). They ignore dynamics and behaviour, two
aspects of WSANs - and in general of reactive systems - that
should be taken into account already during the modeling
phase. In fact, being reactive systems, WSANs can employ
the ECA rule-based programming mechanism [15], increasing
the difficulty to predict and analyse the WSAN behaviour
because of the ability of rules to interact with each other.
Particularly in IoT area, the rules that govern the relations
between sensors and actuators can lead to highly distributed
collaborative applications. It follows that run time coordination
and formal analysis for WSANs becomes a necessity to avoid
side effects mainly when applications are critical.

Reaction rules constitute a promising approach to specify
and program reactive systems in a declarative manner [16].
In particular, they provide the ability to reason over events,
actions and their effects, and allow detecting events and re-
sponding to them automatically. A great variety of approaches
have been developed for reaction rules, which have for the
most part evolved separately and have defined their own
domain and platform specific languages [17], [18], [19]. Novel
semantics are being devised, including for the Logic-based



agent and Production System language (LPS) and KELPS [20].
In [16] the authors address the Reaction RuleML subfamily

of RuleML and survey related work. Reaction RuleML is a
standardized rule markup/serialization language and semantic
interchange format for reaction rules and rule-based event
processing. Reaction rules include distributed Complex Event
Processing (CEP), Knowledge Representation (KR) calculi, as
well as ECA rules, Production (CA) rules, and Trigger (EA)
rules.

Reaction RuleML provides several layers of expressiveness
for adequately representing reactive logic and for interchang-
ing events (queries, actions, event data) and rules. The first
level defines general concepts (e.g., space, time, event, action
situation, process, agent, etc.) in a modularized ontological
top-level structure, with a left to right vertical order in the
top-level ontologies. For instance, the concepts and relations
for time and space are used in the event and action ontology,
which is employed in the situation ontology etc. These general
concepts defined in the top-level ontologies can be further
specialized with existing domain ontologies and ontologies
for generic tasks and activities (e.g., situation processing, pro-
cesses/workflows, agents including their pragmatic protocols,
etc.). The application ontologies specialize these domain and
task concepts w.r.t. a specific application, often on a more
technical platform specific level. The second level defines
the event, action, and interval algebra operators for complex
events, actions, and intervals as well as other semantic con-
cepts in the respective ontologies.

In [21] the authors propose an ontology-based approach for
describing (reactive) behavior on the Web and evolution of
the Web that follows the ECA paradigm: MARS is a modular
framework for composing languages for events, conditions,
and actions by separating the ECA semantics from the un-
derlying semantics of events, conditions and actions. This
modularity allows for high flexibility w.r.t. the heterogeneity
of the potential sublanguages, while exploiting and supporting
their meta-level homogeneity on the way to the Semantic Web.

A markup proposal for active rules can be found already
in RuleML [22], but it does not tackle the complexity and
language heterogeneity of events, actions, and the generality
of rules, as described here. The RDF level of rules provides
the base for reasoning about rules. Using the above ontologies,
every rule is interpreted as a network of RDF resources
of the contributing ontologies (ECA, event algebras, OWLQ
specifications, application domains etc.). RDF/OWL reasoning
can be applied for analysis of structural correctness, safety of
variables and evaluation order.

III. ONTOLOGICAL APPROACH

In this section the ontological approach to build a uni-
form three-view model of a WSAN is presented. Such an
approach aims at providing a combined semantic description
of static, dynamic and behavioural aspects of the system, so
that supporting querying and reasoning mechanisms for the
formal verification of static and behavioural correctness of
the system. In order to build such an ontological framework,

the description of static, dynamic and behavioural aspects is
required.

A. Ontology architecture

In our approach, the ontology includes:

• a formal description O1 of static aspects of the system;
• a formal description O2 of the system dynamics as a set

of ECA rules;
• a formal representation O3 of the system behaviour as a

finite state machine FSM (according to the static aspects
of the system in O1 and the set of ECA rules in O2).

The details are given below:

• O1 describes the declarative part of the system, i.e.
concepts like sensors and actuators and their mutual
properties and relationships, the deployment context of
the devices, etc. For this purpose we can exploit and
combine suitable ontologies like SSNO [23] and DogOnt.
The values that sensors and actuators can assume, belong
to finite sets. For instance the boolean set or a finite
integer set. Real numbers are also represented by a finite
set of values.

• O2 conceptualizes the system dynamics expressed by an
ECA rule set. It formalizes concepts like event, condition
and action. A specific ECA rules-based program is a
set of O2 instances. System invariances are expressed as
ECA rules with no actions. The MARS ontology can be
used for this purpose [24]. In particular, conditions are
conceptualized as predicates including functions operat-
ing on finite domains, comparison and boolean operators,
while actions are modeled as sets of assignments to
labels representing actuators. Assignments are executed
in an atomic way. The assigned values are expressions
evaluated using the labels of sensors and actuators.

• O3 conceptualizes the system behaviour (w.r.t. the dy-
namics described in O2) expressed as a finite state
machine (FSM). The possibility to exploit the FSM
formalism follows by the assumption that all domains
are finite. In detail, we take into account the State Chart
extensible Markup Language (SCXML) [25]. Hence, O3

provides a suitable conceptualization of SCXML and the
system behaviour is represented by all O3 instances. Such
instances are calculated generating all admissible system
states (i.e., tuples that verify all system invariances) and
all possible state transitions fired by any ECA rule in O2.
SCXML is an XML-based markup language that provides
a generic state-machine based execution environment
based on Harel statecharts [26]. On the one hand, the
conceptualization of SCXML in O3 gives us directly the
conceptualization of a system behaviour as a FSM. On
the other hand, the executable nature of SCXML give us a
mechanism to simulate and execute the system described
in O1 and programmed in O2 by executing the corre-
sponding O3 instances through a SCXML interpreter.



B. Ontology instantiation

For what concern O1 and O2 the procedure is simple. The
instances of O1 are exactly the specific devices (sensors and
actuators) and context elements of the specific WSAN, while
the instances of O2 are the ECA rule set representing specific
functionalities of the given system.

For what concern O3 we need to generate all possible states
and transitions describing the behaviour of the specific set
of ECA rules in O2 related to a specific functionality of the
system in a corresponding FSM.

For this purpose, an incremental approach is followed. First
of all, we generate the set of all possible admissible states
that satisfy all invariances of the system. Then, the set of
all admissible transitions is created, i.e., all state transitions
obtained applying ECA rules, guaranteeing specific properties
(e.g., determinism, consistency, termination).

Details are described below.

1) State generation: The set of all possible admissible
states is generated, first calculating the cartesian product of
all finite domains of sensors and actuators conceptualized
in O1, then selecting only those states verifying the system
invariances in O2. An admissible state is simply a tuple of
values of the form < I,O >, where I is a vector of values
of all sensors (input components) and O is a vector of values
of all actuators (output components). If the vector I has m
components, i.e. I =< i1, ..., im > and the vector O has n
components, i.e. O =< o1, ..., on > , then the number of all
possible states is 2m+n . Applying the invariances we obtain
the set of admissible states, let say of cardinality z . We denote
the set of all admissible states s1, ..., sz in S.

2) Transition generation and property verification: The
following algorithm is used to generate all the admissible
transitions on the set of the admissible states w.r.t. the set
of ECA rules in O2. The algorithm can be described using a
matrix z × 1, where z is the cardinality of the set of the all
admissible states and where each row corresponds to a specific
admissible state.

The generation procedure includes the verification of the
following properties of the system: consistency, determinism
and termination. The definitions of these properties have been
adapted from [4].

A system satisfies the consistency propriety if its rules are
not unused, incorrect, redundant and contradicting.

A rule is called unused if it can never be applied. A rule
is defined incorrect if can lead to a state that is outside the
domain (i.e., a state that is not admissible for the system).
Redundancy is the case where there are rules or chain of rules
that are identical. The condition of these rules is always true
for the same states and when applied lead always to the same
state. A contradiction consists of a logical incompatibility
between two or more rules.

Given an ECA rule r in O2 (the following procedure must
be repeated for all ECA rules in O2), we check the condition
cr of r for all states belonging to the matrix.

If the condition cr can never be applied (for example, if t
indicates a sensor temperature with range (0, 40) the condition
t > 50 is not applicable), then the rule r is labelled as unused
and is eliminated. Otherwise, i.e. if the set Sr of all states
sri satisfying the condition cr has cardinality k 6= 0, then the
action of r is applied to sri for i = 1, ..., k, and for each sri
the target state s′i is generated. For all s′i with i = 1, ..., k,
if exist some s′i /∈ S, then the rule r is labelled as incorrect.
Otherwise, the state s′i is identified as the target state of the
each sri . For what concerns the redundancy property, it suffices
to check whether for any rule r, w, with r 6= w, and for any
si = sri = swi satisfying condition cr ∧ cw, the target state
of sri coincides with the one of swi . In this case w (or r) is
considered redundant. Similarly, a contradiction can be put in
evidence checking for any rules r, w, with r 6= w, whether
cr = ¬cw holds. Once cut off unused, incorrect, redundant
and contradicting rules, an association between the ontological
representation of any admissible ECA rule r and the source
state sri is created.

Determinism. During the generation phase of the automaton,
it could happen that more than one admissible target state is
generated for a certain source state si. It happens whenever
there is at least two rule r, w, with r 6= w, such that si =
sri = swi satisfies condition cr∧cw and the target state of sri is
different from the one of swi . This means that the determinism
property of the system is denied.

In order to guarantee the determinism of the finite state
machine, this kind of situation must be excluded. To solve this
problem, at the end of the automaton generation procedure, all
rows having two or more admissible target states are selected
through the association with ECA rules in O2. The selected
set is made up of all those ECA rules denying determinism.
If the user wants to eliminate an ECA rule in this set, the
target states of those source states to which the ECA rule is
applicable are eliminated.

Termination. The termination is defined as the property
assuring that for all source states, the target state of the
automaton becomes stable in a finite time. A stable state is a
state whose target state is empty, that is to say the target state
is not reached by applying an ECA rule to the source state. It
is possible to move from this state only in consequence of an
environment change (variation of sensor values).

For each state si having target state not empty, the not re-
flexive transitive closure cl(si) on the target state is calculated.
For all si it must be si /∈ cl(si).

If at least one si not satisfying this property exists, then the
automaton has a cycle. The set of rules associated to the states
involved in the cycle is selected for the user.

IV. HOME AUTOMATION CASE STUDY

Monitoring and automatic control of building environment
is a case study considered quite often in the literature [27],
[28]. Home automation can include the following functionali-
ties: (i) heating, ventilation, and air conditioning (HVAC) sys-
tems; (ii) emergency control systems (home burglar security
alarm, fire alarm); (iii) centralised light control; and (iv) other



systems to provide comfort, energy efficiency and security. In
order to validate our approach we consider the home burglar
security alarm system.

A security alarm system is designed to detect intrusion
into a building or area. Security alarms are used in res-
idential, commercial, industrial, and military properties for
protection against burglary as well as personal protection
against intruders. Home security systems work on the simple
concept of securing entry points into a home with sensors that
communicate with a control panel or command center installed
in a convenient location somewhere in the home.

For our case study, we consider a security alarm composed
by passive infrared detectors (PIRs). A PIR motion detector
is one of the most common sensors found in household
and small business environments. PIR sensors do not detect
motion; rather, they detect abrupt changes in temperature at
a given point. As an intruder walks in front of the sensor,
the temperature at that point will rise from room temperature
to body temperature, and then back again. This quick change
triggers the detection.

We assume that a 360 Degree Passive Infrared Motion
Sensor is placed on the ceiling of every room, and each room
is completely covered by its sensor. In our example, the house
has two rooms, a bathroom and a living room. In addition we
assume that only one person lives in the house. The occupancy
sensor placed in every room can be used for the intrusion
detection but also for the light switch; we also hypothesize
that in every room there is a lighting button to turn on and off
the light manually (for example, when someone go to sleep).

The set of devices placed in the house is given by
D = {Lm, Ll, Ls, La, Bm, Bl, Bs, Ba, Lw} , where L defines
the living room, B defines the bathroom, the letter m defines
the PIR detector, a light sensor is denoted by l, a light switch
is represented by s, a lamp actuator by a. For example the
light sensor in the bathroom is labelled with Bl. The entrance
is in the living room and from living room you can enter the
bathroom through the door. In addition one warning alarm
actuator w is associated to the living room (Lw).

Fig. 1. House plan

The formalism used for ECA rules is the following:
E[C]/A, where E is a set of labels in D, C is a predicate
with inputs in D and A is a set of actions on actuators in D.
This formalism can also be used to represent rules without an
action (or a condition, or an event).

Firstly, the invariances of the system, i.e. all those con-
straints that are independent from the behaviour of the system,
are defined. For this example, the following invariances are
defined

i1. Lm, Bm[Lm = false ∧Bm = true]
i2. Bm, Lm[Bm = false ∧ Lm = true]
i3. Lm[Lm = false ∧Bm = false]
i4. Lm[Lm = true ∧Bm = false]
i5. La, Ba[(La = true⊕Ba = true)
∨ (La = false ∧Ba = false)] .

The first constraint, for instance, states that if a person is inside
the living room, and both occupancy sensors Bm, Lm change
value, then the person must have moved from the living room
to the bathroom. The last axiom excludes the situation in which
lights are on in both rooms. Then, the dynamic of the system
is defined using the following ECA rules:

d1. Bm[Lm = false ∧Bm = true]/Lw ← true
d2. Bm, Lm[Bm = false ∧ Lm = true]/

Ba ← false, La ← true
d3. Bm, Lm[Bm = true ∧ Lm = false]/

Ba ← true, La ← false

The following ECA rules are examples of rules that make
the system properties not satisfied.

Incorrect rule:
d4. Lm[Ba = true ∧ Lm = true]/La = true

Unused rule:
d5. Bm[La = true ∧Ba = true]/La ← false

Non termination (cycle):
d6. Lm[Lm = true]/La = true
d7. Ll[Ll = true]/La = false

The following rules can be introduced to avoid the previous
situation:

d8. Lm[Ll = false∧La = false∧Lm = true]/La ← true
d9. Lm[Ll = true∧La = true∧Lm = false]/La ← false

Redundancy rules:
d10. Bm[Ba = false]/Ba ← true, La ← false
d11. Bm[Ba = false ∧ La = true]/Ba ← true, La ←

false

V. CONCLUSION

We proposed a semantic-driven approach for modeling,
checking and executing ECA rule-based WSANs. The ap-
proach can be considered uniform since any of the previous
phases works on a common ontology-based WSAN model
integrating and linking three different system views: the static
one (i.e., sensor and actuator types in the WSAN, description
of its environment, deployment information etc.), the dynamic
one (i.e., a set of ECA rules programming the given WSAN)
and the behavioural one (i.e., a finite state machine (FSM)-
based representation of the WSAN behaviour w.r.t. the given
dynamics).

The proposed approach provides an agile verification of
properties like consistency, correctness and termination, and



these properties can be defined in general for all systems. The
SCXML is used during verification and execution phases.

In the future, we would like to allow the definition of
new properties in a dynamic way, exploiting only query and
reasoner-based methods (which are native in ontologies). For
this reason, we are thinking about translating the verification
procedure only in terms of SPARQL queries.

Moreover, if the approach is managed only with ontolo-
gies, it is possible to define and verify not only the generic
properties considered in this paper, but also system-dependent
properties (for instance, fault tolerance).

REFERENCES

[1] C. Zhang, M. Li, and Q. Pan, “An eca rules based middleware
architecture for wireless sensor networks,” in PDCAT. IEEE Computer
Society, 2005, pp. 586–588. [Online]. Available: http://dblp.uni-
trier.de/db/conf/pdcat/pdcat2005.html

[2] A. Casteigts, A. Nayak, and I. Stojmenovic, Applications, Models,
Problems and Solution Strategies. Wiley, Jan 2010, ch. 1 of Wireless
Sensor and Actuator Networks - Algorithms and Protocols for Scalable
Coordination and Data Communication, Nayak, A. and Stojmenovic, I.
(Eds.).

[3] I. F. Akyildiz and I. H. Kasimoglu, “Wireless sensor and
actor networks: research challenges.” Ad Hoc Networks, vol. 2,
no. 4, pp. 351–367, 2004. [Online]. Available: http://dblp.uni-
trier.de/db/journals/adhoc/adhoc2.html

[4] F. Corradini, R. Culmone, L. Mostarda, L. Tesei, and F. Raimondi,
“A constrained ECA language supporting formal verification of wsns,”
in 29th IEEE International Conference on Advanced Information Net-
working and Applications Workshops, AINA 2015 Workshops, Gwangju,
South Korea, March 24-27, 2015, 2015, pp. 187–192.

[5] X. Jin, Y. Lembachar, and G. Ciardo, “Symbolic verification of eca
rules.” in PNSE+ModPE, ser. CEUR Workshop Proceedings, D. Moldt,
Ed., vol. 989. CEUR-WS.org, 2013, pp. 41–59. [Online]. Available:
http://dblp.uni-trier.de/db/conf/apn/pnse2013.html

[6] I. Ray and I. Ray, “Detecting termination of active database rules
using symbolic model checking.” in ADBIS, ser. Lecture Notes in
Computer Science, A. Caplinskas and J. Eder, Eds., vol. 2151.
Springer, 2001, pp. 266–279. [Online]. Available: http://dblp.uni-
trier.de/db/conf/adbis/adbis2001.html

[7] E.-H. Choi, T. Tsuchiya, and T. Kikuno, “Model checking active
database rules under various rule processing strategies,” IPSJ Digital
Courier, vol. 2, pp. 826–839, 2006.

[8] N. D. Rodrı́guez, M. P. Cuéllar, J. Lilius, and M. D. Calvo-Flores,
“A survey on ontologies for human behavior recognition,” ACM
Comput. Surv., vol. 46, no. 4, pp. 1–33, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2523819

[9] R. Culmone, M. Falcioni, and M. Quadrini, “An ontology-based frame-
work for semantic data preprocessing aimed at human activity recog-
nition,” in SEMAPRO 2014 : The Eighth International Conference on
Advances in Semantic Processing. Alexey Cheptsov, High Performance
Computing Center Stuttgart (HLRS), 2014.

[10] R. Culmone, P. Giuliodori, and M. Quadrini, “Human activity recogni-
tion using a semantic ontology-based framework,” International Journal
On Advances in Intelligent Systems, vol. 8, no. 1,2, pp. 159–168, 2015.

[11] D. Bonino, E. Castellina, and F. Corno, “The dog gateway: enabling
ontology-based intelligent domotic environments,” Consumer Electron-
ics, IEEE Transactions on, vol. 54, no. 4, pp. 1656–1664, November
2008.

[12] L. Sommaruga, A. Perri, and F. Furfari, “Domoml-env: an ontology for
human home interaction.” in SWAP, ser. CEUR Workshop Proceedings,
P. Bouquet and G. Tummarello, Eds., vol. 166. CEUR-WS.org, 2005.
[Online]. Available: http://dblp.uni-trier.de/db/conf/swap/swap2005.html

[13] D. Bonino and F. Corno, “Dogont - ontology modeling for intelligent
domotic environments,” in Proceedings of the 7th International Con-
ference on The Semantic Web, ser. ISWC ’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 790–803.

[14] T. G. Stavropoulos, D. Vrakas, D. Vlachava, and N. Bassiliades,
“Bonsai: A smart building ontology for ambient intelligence,”
in Proceedings of the 2Nd International Conference on Web
Intelligence, Mining and Semantics, ser. WIMS ’12. New
York, NY, USA: ACM, 2012, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/2254129.2254166

[15] J. Cano, E. Rutten, G. Delaval, Y. Benazzouz, and L. Gurgen, “Eca
rules for iot environment: A case study in safe design.” in SASO
Workshops. IEEE Computer Society, 2014, pp. 116–121. [Online].
Available: http://dblp.uni-trier.de/db/conf/saso/saso2014w.html

[16] A. Paschke, H. Boley, Z. Zhao, K. Teymourian, and T. Athan, “Reaction
ruleml 1.0: Standardized semantic reaction rules.” in RuleML, ser.
Lecture Notes in Computer Science, A. Bikakis and A. Giurca, Eds.,
vol. 7438. Springer, 2012, pp. 100–119.

[17] A. Paschke and A. Kozlenkov, “Rule-based event processing and reac-
tion rules,” in Proceedings of the 2009 International Symposium on Rule
Interchange and Applications, ser. RuleML ’09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 53–66.

[18] A. Paschke and H. Boley, “Rules capturing events and reactivity,”
Emerging Rule-Based Languages and Technologies, 2009.

[19] A. Paschke, P. Vincent, and F. Springer, “Standards for complex
event processing and reaction rules,” in Rule - Based Modeling and
Computing on the Semantic Web, ser. Lecture Notes in Computer
Science, F. Olken, M. Palmirani, and D. Sottara, Eds. Springer
Berlin Heidelberg, 2011, vol. 7018, pp. 128–139. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-24908-2 17

[20] R. A. Kowalski and F. Sadri, “A logic-based framework
for reactive systems.” in RuleML, ser. Lecture Notes in
Computer Science, A. Bikakis and A. Giurca, Eds., vol. 7438.
Springer, 2012, pp. 1–15. [Online]. Available: http://dblp.uni-
trier.de/db/conf/ruleml/ruleml2012.html

[21] T. Eiter, G. Ianni, T. Krennwallner, and A. Polleres, “Reasoning web,” in
Rules and Ontologies for the Semantic Web, C. Baroglio, P. A. Bonatti,
J. Maluszynski, M. Marchiori, A. Polleres, and S. Schaffert, Eds. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 1–53.

[22] (2015) Ruleml. [Online]. Available: http://www.ruleml.org/
[23] M. Compton, P. Barnaghi, L. Bermudez, R. Garcia-Castro, O. Corcho,

S. Cox, J. Graybeal, M. Hauswirth, C. Henson, A. Herzog, V. Huang,
K. Janowicz, W. D. Kelsey, D. L. Phuoc, L. Lefort, M. Leggieri,
H. Neuhaus, A. Nikolov, K. Page, A. Passant, A. Sheth, and K. Taylor,
“The {SSN} ontology of the {W3C} semantic sensor network incubator
group,” Web Semantics: Science, Services and Agents on the World Wide
Web, vol. 17, pp. 25 – 32, 2012.

[24] C. Schlenoff and M. Gruninger, “Towards a formal representation of
driving behaviors.” in FAABS, ser. Lecture Notes in Computer Science,
M. G. Hinchey, J. L. Rash, W. Truszkowski, C. Rouff, and D. F.
Gordon-Spears, Eds., vol. 2699. Springer, 2002, pp. 290–291. [Online].
Available: http://dblp.uni-trier.de/db/conf/faabs/faabs2002.html

[25] W3C. (2015, 9) State chart xml (scxml): State machine notation for
control abstraction. [Online]. Available: http://www.w3.org/TR/scxml/

[26] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comput. Program., vol. 8, no. 3, pp. 231–274, 1987.

[27] D.-M. Han and J.-H. Lim, “Smart home energy management system us-
ing ieee 802.15.4 and zigbee,” Consumer Electronics, IEEE Transactions
on, vol. 56, no. 3, pp. 1403–1410, Aug 2010.

[28] K. Gill, S.-H. Yang, F. Yao, and X. Lu, “A zigbee-based home au-
tomation system,” Consumer Electronics, IEEE Transactions on, vol. 55,
no. 2, pp. 422–430, May 2009.


