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Abstract—Adaptive systems are often composed of dis-
tributed components that co-operate in order to achieve a
global behaviour, and yet many approaches for adaptive
systems are centralised or make strong assumptions about
the distributed aspects of the problem. However, if insufficient
attention is paid to the problem of decentralisation, especially
in the difficult and unpredictable environments in which
adaptive systems are commonly deployed, it can introduce
inefficiencies, and even cause catastrophic failure. An adaptive
system is either required to implement subtle synchronisation
and consensus protocols or accept certain types of failure
from which the system cannot recover. A major goal of our
research is to facilitate the development of adaptive, reliable
and distributed applications. We provide a framework in which
a state machine language is used to define logically centralised
behaviour. This is automatically translated into a reliable and
efficient distributed implementation that enforces the correct
co-ordination in the presence of unpredictable failures.

Keywords-Adaptive systems, fault tolerance, distributed sys-
tems.

I. INTRODUCTION

Adaptive systems have been proposed as a solution for

enabling systems to continue meeting their requirements or

goals in the face of unpredictable variation in the execution

environment [1]. In a centralised system, other applications

can contend for memory and CPU attention; in a distributed

system, network bandwidth and connectivity is variable;

in an embedded or ubiquitous system, properties of the

physical environment change without regard for the stability

of applications. These environments can impact a system’s

performance, reliability and indeed its very capacity to

perform the function it was designed for.

Such change is naturally unpredictable and attempts to

pre-empt it rely on some form of closed-world assumption.

A better approach is to endow the system with adaptive

techniques which observe the actual runtime conditions

and make decisions about how to change the application

behaviour so that the requirements can be upheld, creating

a feedback loop.

Much existing work on adaptive systems [2], [3] makes

the strong assumption that the adaptive controller is reliable

and can co-ordinate any distributed application components

(insofar as they exist) without faults. In other words, such

systems are centralised. For example, Rainbow [2] can apply

centralised repair strategies to client-server applications.

However, in many of the application areas of adaptive

systems, especially embedded systems, distribution is a

common requirement. If reliable distribution is assumed

rather than addressed, the adaptive controller itself risks

introducing another point of inefficiency and failure, indeed

one from which it is unlikely to be able to recover.

In this work, we seek to provide a framework, on which

an adaptive system can be based, which handles the reliable

distribution of the adaptive behaviour without encumbering

the programmer with the manifold concerns introduced by

decentralisation. Many existing centralised adaptive tech-

niques can be adjusted to work on our platform, providing

distribution in exchange for minimal effort.

Our platform, called GOANNA [4], uses finite state

machines (FSMs) as a formal basis for co-ordinating a set

of distributed application components. Adaptive algorithms

specified using our FSM language can be distributed auto-

matically by the platform which ensures correct execution

and fault tolerance by employing a consensus protocol based

on Multi-Paxos [5]. Additionally, components are grouped

into sets which provides an extra dimension of robustness

as individual components are permitted to join and leave the

system at runtime without affecting the correct execution of

the adaptive behaviour.

The main contributions of this work, then, are:

• A framework for specifying adaptive algorithms which

can then be distributed to provide a reliable decen-

tralised implementation. A key benefit is the separation

of the adaptive and the distributed concerns. The use

of finite state machines also aids in the independent

verification of the adaptive algorithm, although we do

not specifically address this here.

• A novel fault-tolerant consensus protocol for distributed

state machine execution based upon Multi-Paxos.

In Section II we introduce an example adaptive system

which will be used to explain aspects of our approach.

Section III gives an overview of the approach and Section IV

describes our language for defining state machines. Section

V describes the state machine decomposition process and the

consensus protocol, the performance of which is discussed

in Section VI. Finally we comment on related work and

conclude.



Figure 1. The complete state machine. A label such as k_moveto_2 refers to the action moveToLocation2 of the Koala component. A label such
as c_not_binfull refers to the event in which the Crusher observes that the bin is not full.

II. CASE STUDY

To illustrate our approach, we refer to a small embedded

application that co-ordinates several mobile robots to achieve

a global goal in the face of an uncertain environment. The

global behaviour is expressed as a reactive plan [6] which

handles unexpected transitions in the observable state of the

environment by continually sensing and choosing actions

which lead from the sensed state to the satisfaction of the

goal. In this manner, the plan adapts to the unpredictable

evolution of the environment. The plan is generated from a

description of the capabilities of each robot with respect to

a model of the environment, and an abstract goal denoting

the state, or states, to which the system should progress

(although in this paper we are not concerned with the

mechanics of plan generation). This technique is particularly

appropriate for our approach as plans can be easily expressed

in the form of a state machine.

For our example application, there are three small robots:

a Koala which can carry balls (representing waste materials),

a fixed Arm which can pick and place balls, and a Crusher

which destroys them. The behaviour of the system as a

whole is to collect balls from a room, and have them crushed

(to clean the room). The plan is generated using the available

application-dependent actions such as moveToLocation1
(start moving to location 1), moveToLocation2, and unload

(the ball), providing a set of paths (traces) such as those in

Figure 1. For instance the transitions between states 0, 6, 11,

14 and 0 specify that when the Koala has been loaded with a

ball, the bin (in front of the crusher) is not full and the Koala

is at location 1, then the Koala should move to location 2

(next to the arm). Notice that the act of moving to location 2

does not guarantee that in the next step the environment will

be in a state where the Koala is at location 2. An unmodelled

portion of the environment (such as an unwitting human)

may interact to return the Koala to location 1, for example.

In this case, the plan can continue by attempting to move

again. If the action succeeds, then the transitions between

states 0, 6, 11, 13 and 0 specify that when the Koala has

moved to location 2 the arm can load the ball.

If this system were implemented in a centralised manner,

a failure in the node controlling plan execution would be

catastrophic. Additionally, the plan execution middleware

would be forced to implement appropriate algorithms for

handling lost connectivity or failed robots. Our platform

encapsulates these distribution concerns from any adaptive

approach which is expressible in our FSM language, and

removes the reliance on the central node.

III. APPROACH OVERVIEW

In the GOANNA approach, we assume the system is

composed of a set of components which provide and re-

quire services. These components are then co-ordinated to

achieve a global adaptive behaviour via the specification of

a (global) finite state machine. This state machine specifies

the sequences of events (resulting from service invocations)

which are permitted in the running system.

To achieve a robust decentralisation of the global state

machine, it is decomposed into a set of local state machines.



A leader node (which uses a skeleton as described in

Section V-A) is used in order to ensure that the local state

machines implement the global FSM. Thus the distributed

implementation has the same behaviour as the centralised

specification. This is achieved by using our consensus pro-

tocol that extends Multi-Paxos and is described in Section

V-B.

If the leader fails, the protocol handles the election of a

new one. The decomposition process is described in Section

V-A.

Figure 2. GOANNA overview.

Figure 2 shows three components from our case study

which provide various services. The GOANNA platform

gives to each host a manager which handles the consen-

sus protocol and stores the local state machines. In this

example there are Arm and Crusher components associated

with the same manager. This manager contains the local

state machines pertaining to the Arm and the Crusher.

The Koala component is associated with another manager.

Each manager changes the FSM state in response to ser-

vice invocations on each component and the leader checks

that these state changes are in accordance with the global

behaviour. Managers may also invoke component services.

For example, after a sequence of events corresponding to

the Koala being loaded, the crusher’s bin being empty and

the Koala being at location 1, the Koala manager invokes

the moveToLocation2 service. Note that the environmental

events (such as loaded) are provided services of each

component. Intuitively, these are called by the environment

itself (or an appropriate sensor component), at which point

the corresponding manager can respond.

In the next section, we describe the language used to

define global FSMs, before describing the technical details

of the decomposition and consensus algorithms.

1 global fsm globalPlan(set Crusher crusherSet,

2 set Arm armSet,set Koala koalaSet){

3 loaded on koalaSet from *
4 0-6: -> {}

5 not_binfull on crusherSet from *
6 6-11: -> {}

7 load on armSet from *
8 13-0: -> {}

9 atLocation1 on koalaSet from *
10 11-14: -> {moveToLocation2();}

11 moveToLocation2 on koalaSet from *
12 14-0: -> {}

13 atLocation2 on koalaSet from *
14 11-13: -> {load();}

15 on timeout(20000)

16 0-0:->{alert();}

17 ...

18 }

Figure 3. The (partial) state machine description.

IV. STATE MACHINE LANGUAGE

A global state machine in our language consists of a list

of event-state-condition-action rules defined in terms of the

participating components (grouped into sets as described

below). Figure 3 shows the state machine for our case study.

Each rule states that when the system is in the given state

and the event is observed, then if the condition holds, the

system should perform the stated action.

For example, the fourth rule in Figure 3 states that when

the state is 11 and the event atLocation1 is observed on

a Koala, then (since the condition is empty), the action

moveToLocation2 is performed on the same component,

moving the state machine to state 14.

A. Events

Four kinds of events can be captured in a GOANNA

state machine. On the client side, outgoing invocations

and returned responses are captured. On the server side,

incoming invocations and outgoing responses are captured.

Mapping service invocations into four different events pro-

vides flexibility, since co-ordination can be defined using

only client side events, only server side events, or both, as

needed. For instance in Figure 3 the event "loaded on

koalaSet from *" corresponds to a loaded incoming

service call observed on a Koala. In this case we do not

specify the client that performs the invocation, indicated by

‘*’

Timeout events are also supported. Timeout events are

generated by the leader when no rule has been applied within

the specified time t. For example, timeout(20000) will

raise a timeout after 20 seconds if no other rule has been

applied.

B. States, conditions, actions

For each event as described above the state machine

can define a list of state-condition-action tuples. A state-

condition-action is of the form qs-qd: { condition } → {
action } where qs and qd are the start and end states, while



the condition and action are a predicate and a piece of code

respectively. When an event is observed, the current state of

the global state machine is qs, and the condition is satisfied,

then the action can be executed and the current state is set

to the end state qd. Note that the first state listed in the state

machine definition is assumed to be the initial state for the

FSM. For example in Figure 3 the initial state is 0.

If an event is observed, but the rule cannot be applied (if

the condition does not hold, or there is no relevant transition

from the current state), then one of several policies, such as

retry (the event acceptance) or discard (the event) can be

enforced.

C. Sets

The state machine is given in terms of sets of components

which group together component instances of the same

type. For instance Figure 3 specifies the state machine

globalPlan which is parameterised by crushSet, armSet

and koalaSet, which are sets that group together compo-

nents of the type Crusher, Arm and Koala, respectively.

The set parameters are defined when the state machine is

instantiated in a separate configuration specification. Each

set is defined using a component type1 and optionally a

further where predicate that can use attributes such as host

name, position, and node capabilities to group components

as they are discovered. For example, in Figure 4 there

are three set definitions: a, k and c. The set a groups

components of the type Arm that reside in location 2. k

includes all Koala components deployed in the system, and

c defines a Crusher component that runs on a specific host

crusherHost.

1 configuration RobotApplication {

2 set a:Arm where (location=="location2");

3 set k:Koala where (host==ALL);

4 set c:Crusher where (host=="crusherHost");

5

6 instance arm1:globalPlan(a,k,c);

7 }

Figure 4. A configuration definition.

Components can join and leave sets at runtime. When an

action of the global FSM must be performed an instance

from the appropriate set is selected. This isolates the man-

agement of component availability from the state machine

specification and allows the selection of new available com-

ponents in case of failure.

Sets are maintained by the leader node which has a

registry of all manager addresses, and the sets to which

managers belong.

A configuration can instantiate multiple global FSMs for

different applications. However, these do not interact and

1The component type must be always specified to allow a compile-time
check that the services and events mentioned in the state machine are in
fact provided by the components.

in much of the following we assume a single global FSM

instance.

D. Semantics

While the informal description of our state machines

provides an intuition, in the following we provide a formal

description of the acceptance criterion and the language

accepted by them. We first provide some definitions. The

set E denotes the set of all possible component events while

e1, e2 . . . en are elements in E. The set Ec denotes the set

of events locally observed on a component c and ec
1 . . . ec

n

elements in Ec.

Definition 1: Let S = {c1, . . . , ci, . . .} be a system where

each ci is a component instance. A trace t = e1, . . . , ei, . . .

of S is a sequence of events in E. We denote with TS the

set of all possible traces in the system S. The traces in TS

are subject to the causality relation presented in [7] defining

a partial ordering on the events in the distributed system.

Definition 2: A state machine is 4-tuple

A = (Q, q0, I, rules) where: (i) Q is a finite set of

states; (ii) q0 ∈ Q is the initial state; (iii) I is a finite set

of events s.t. I ⊆ E; and (iv) rules is a list of 5-tuples

(e,qs,qd,condition,action) where e ∈ E and qs, qd ∈ Q.

Definition 3: Let A = (Q, q0, I, rules) be a state ma-

chine and e ∈ I be an event. Let q be the current

state of A. The event e can be accepted by a rule

(e,qs,qd,condition,action) in rules if q = qs and the con-

dition is satisfied.

Definition 4: Let A = (Q, q0, I, rules) be a state ma-

chine and t = e1 . . . ei . . . a trace in TS . Let q0 be the initial

state of A and e1 be the first symbol to read. A accepts the

sequence t if for each current state qi−1 and next symbol

ei, A can accept ei by a rule (ei,qi−1,qi,condition,action).

When the rule is applied the action is performed, qi is the

new state of A and ei+1 the next symbol to read.

Definition 5: The language TA recognised by a state

machine A is composed of all traces accepted by it.

When multiple global state machines are defined the event

must be accepted by all of them.

Note that the set TA is a subset of TS since the compo-

nents can, at runtime, produce events that cannot be accepted

by the state machine. In other words, if a trace ts ∈ TS and

a trace ta ∈ TA move S and A, respectively, from state s to

s′, then ta can be derived from ts by deleting those events

which have not been accepted, but where instead a reaction

policy such as retry (the parsing) or discard (the event)

has been applied.

In the following we introduce notations and definitions

related to our global state machine decomposition process:

• M denotes the set of all managers and m1, . . ., mn are

elements in M ;

• G denotes the set of all global state machine instances2

2State machine instances are names that identify FSM instances defined
inside the configuration file.



as defined in the configuration files. A1, . . ., Ai are

elements in G and A1,. . ., Ai the corresponding global

FSM definition;

• S denotes all set definitions as defined in the config-

uration file, sc denotes a set in S whose definition is

based on a component type c.

• LS denotes the set of all local FSMs and As ∈ LS

denotes a local FSM related to the set s.

• K denotes the set of all component instances and Km

denotes the set of instances local to the manager m ∈
M .

Definition 6: A manager m ∈ M is a pair (Km, fm)
where fm is a function fm : G → Z × 2LS. The function

fm relates each global FSM Ai to an integer in Z denoting

its state (the last updated state the manager is aware of)

and to a set of local state machines derived from Ai. More

specifically, fm relates Asc to Ai iff component c is a

member of Km, (i.e., the set sc has been allocated by the

manager m).

Definition 7: The leader L is a pair (fs, f l) where fs

is a function fs : S → 2M that relates to each set s all

managers where the set has been allocated, fl is a function

fl : G → Z×Ak that relates to each global FSM A its state

and the corresponding skeleton Ak .

V. DISTRIBUTION

In the following we first introduce the global state ma-

chine decomposition process then we give the details of our

consensus protocol.

A. State machine decomposition

We decompose each state machine A into a set of local

ones plus a skeleton. More specifically if A is defined over

the sets s1, . . ., sn our decomposition process generates a

set of local state machines As1
, . . ., Asn

.

Let A = (Q, q0, I, rules) be a global FSM that is defined

over a set sc. In the following we show how to generate the

local state machine Asc = (Qsc , qs0, Isc , rulessc) and the

skeleton Ak = (Qk, qk0, Ik, rulesk).
We generate the local state machine Asc by examining

the global state machine A for rules of the form R =
(ec, qs, qd, condition, action) where ec is an event observed

on component type c. Every time one of these rules is found,

the event ec is added to Isc , the states qs and qd are added to

Qsc and the rule R is added to rulessc . In other words the

state machine Asc contains all interactions that take place

locally on a component belonging to the set sc. In case qs or

qd is the initial state then q0 = qs or q0 = qd, respectively.

When the initial state is not specified a random one can be

chosen. This does not affect the correctness of the approach

since the leader always synchronises the manager with the

new correct state (see next section for details).

Figure 5 shows the local state machine generated for the

koalaSet set. This is defined over the component type

1 local koalaSet fsm globalPlan(set Crusher crusherSet,

2 set Arm armSet,set Koala koalaSet){

3 loaded on koalaSet from *
4 0-6: -> {}

5 atLocation1 on koalaSet from *
6 11-14: -> {moveToLocation2();}

7 moveToLocation2 on koalaSet from *
8 14-0: -> {}

9 atLocation2 on koalaSet from *
10 11-13: -> {load();}

11 ...

12 }

Figure 5. The automatically-generated local state machine for the Koala.

Koala therefore each rule of the local state machine refers

to an event observed on the Koala (such as atLocation1).

In order to generate the leader skeleton Ak we examine

the global state machine for rules pertaining to timeout

events and add them to the rules rulesk of the skeleton.

In other words the skeleton contains all timeout rules acting

as a global timer.

B. GOANNA consensus protocol

Our consensus protocol extends Multi-Paxos with Steady

State with additional information in order to have a correct

distributed state machine implementation. Multi-Paxos uses

a leader to ensure progress and has improved performance

[5], [8]. Our protocol is an extension that adds the in-

formation needed to execute actions and parse local event

traces correctly. In particular we add timeouts to manage the

one-to-one communications between managers executing an

action and the leader checking it.

Multi-Paxos is normally described using client, acceptor,

learner and leader3 roles. In GOANNA, the client, acceptor

and learner roles are merged into the manager role. A

manager uses its old state to verify the event acceptance

locally before proposing its new state. After a new state

proposal the leader can either decline the request (e.g., the

manager’s state can be out of date) or accept it, waiting for

the action to complete and the new state to be updated. Al-

though these steps are the basis for correct distribution they

are not efficient in terms of memory and traffic overhead.

State machines can be composed of millions of states [9]

so their deployment on each host can be inefficient. More-

over, managers could continuously propose their new local

states overloading the network. Our global state machine

distribution process offers a partition of the transitions and

are loaded only when needed. While a consensus protocol

solves the general problem of agreement between entities,

in our approach we can take advantage of the state machine

structure in order to avoid useless communication. The idea

is that an outdated local state can be enough to reject an

event (i.e, the states do not always need to be updated).

More specifically a manager can reject an event that cannot

3The leader is also known as the proposer.
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Figure 6. Successful protocol execution.

be accepted in its current outdated state q and in any state

reachable from q.

1) Successful protocol execution: The local state ma-

chines and the leader’s skeleton are used to implement the

global state machine instance(s) in a distributed way. In order

to ease the presentation we assume only one FSM instance

Ai of the type A = (Q, q0, I, rules). The general case is a

straightforward extension.

In Figure 6 we show a successful protocol execution.

The protocol starts when an instrumentation point related

to a component instance c detects an incoming/outgoing

message. The instrumentation point generates a component

event e and invokes the procedure validate(c,e) on its

local manager. The procedure uses the last updated state qi

of Ai to verify the acceptance of event e. More specifically,

the procedure considers each set s which the component

instance c belongs to and tries to find a rule qi-qd: {
condition } → { action } of As that can be applied (see

Definition 3). If the rule is found the manager starts the

protocol by sending a propose(result) request to the

leader containing the machine instance Ai and its proposed

state qi. The leader receives the request and compares the

received state qi with the one of its instance Ai, e.g., qi.

Moreover it checks whether or not the instance has been

locked by another manager. Suppose that the states are the

same and the instance has not been locked. Then the leader

generates a new protocol key and responds with a response

data structure to the manager where response.key and

response.outcome are set to the new key and the con-

stant accepted, respectively. With this answer the leader

promises to the manager the lock on the required FSM

instance. The manager receives the request, performs the

local actions (from the rules), and sends back to the leader

an actionExecuted(response.key, newStates) response

where newStates is the new state after the execution of the

rule (qd if the aforementioned rule is applied). The leader

receives the request and checks the existence of the key. In

case the key exists it deletes the key, unlocks the instance and

updates its local state with the received one. The process of

updating the state requires the leader to perform a Multi-

Paxos protocol with Steady State. More specifically, the

new state is sent to a set of backup managers through an

accept request. When the majority of them notify the

update (through an accepted request) the protocol can

terminate correctly. As we will show in the following this

ensures the replication of the state values across several

managers to perform a reliable leader election after leader

faults.

When multiple state machine instances are defined the

manager must check the event acceptance for all of them

(see Section IV for the acceptance criterion). As for the

aforementioned execution if the event is accepted the man-

ager starts the protocol but communicates all the states, locks

all state machine instances and applies all actions (when it

receives the grant from the leader). We also mention that the

leader can change state without any manager interaction.

This occurs when timeout rules, as specified in the state

machines, are applied.

A protocol execution can raise different exceptions as a

consequence of link failures, node failures and so on. In

the next section we show how our protocol handles those

failures.

2) Protocol exceptions: A protocol instance can raise

manager out-of-sync and FSM locked exceptions. A man-

ager out-of-sync exception (Figure 7) is raised when any of

the states sent by the manager are different from the state

of the global FSM on the leader. This is a consequence

of a manager whose proposed states are not synchronised

with the global execution and is detected and notified

by the leader. In particular after the leader receives the

request propose(result) it replies with a response data

structure containing the following information: (i) the field

response.outcome set to out_of_sync; (ii) a list of

tuples (Ai, qi) containing the state machine instances and

the correct global states. These updated global states can be

used to parse again the event.

A locked exception is generated when a manager proposes

a list of tuples (Ai, qi) but one of the instances (e.g., Ai)

has already been locked by another manager. In this case

the leader sends back a response data structure where the

field response.outcome is set to locked.

Failures of managers and communication links are han-

dled in our protocol by using timeouts. In the following

we describe those failures and how they are handled by the

leader and by managers.

A leader can see a manager or link failure during three

possible steps of the protocol execution: (i) when it is

responding to a propose request (propose response fail-

ure); (ii) while waiting for an actionExecution mes-

sage (action execution timeout); (iii) when responding to

an actionExecution message (action execution response

failure). These faults can be a result of a manager fault, a
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Figure 7. FSM manager out-of-sync handling.

communication failure or a slow (overloaded) manager.

• A propose response failure occurs when the leader fails

to communicate to a manager the outcome of a proposal

of states (i.e, a response data structure). In this case

a timeout is raised and the leader deletes any key or

lock granted.

• An action execution timeout occurs when a manager

receives the permission to execute its local actions but

it does not respond with an actionExecuted message.

In this case the timeout is triggered on the leader side.

This causes the key to be deleted (i.e., the protocol

instance to be ended) and all instances to be unlocked.

It is worth mentioning that even if the manager sends an

actionExecuted invocation after the timeout expires

this will be detected (the key no longer exists) and the

states on the leader will not be updated. Therefore in

the case of non-recoverable actions the global execution

can be inconsistent.

The action execution timeout provides resilience to

component faults. When one component fails to execute

its action the leader does not update the states of the

state machine instances (that is, the global behaviour

did not progress), it times out and waits for a new re-

quest. In this way a new component instance (correctly

synchronised) can still perform another action.

• An action execution response failure occurs when the

leader correctly receives an actionExecution mes-

sage from a manager but fails to acknowledge the

reception. In this case the leader ends the protocol

instance and waits for the next request.

A manager can see a leader or link failure during four

possible steps of the protocol execution: (i) when invoking

to a propose request (propose invocation failure); (ii) while

waiting after the propose request (propose response failure);

(iii) when invoking the actionExecution (action execution

invocation failure); (iv) while waiting the actionExecution

response (actionExecution response failure). These faults

can be a result of a leader fault, a communication failure

or slow leader execution.

• A propose invocation failure occurs when a manager

fails to contact the leader at the beginning of the

protocol. In this case no instance of the protocol is

Protocol message Bytes Time (ms)

propose 4x(FSM instance number) 13

response 2+4x(FSM instance number) 13

actionExecuted 2+4x(FSM instance number) 13

actionExecuted ACK 2 13

Figure 8. Protocol overhead.

started and an error is returned to the instrumentation

point.

• A propose response failure occurs when a manager

correctly proposes the new states to the leader but it

does not receive an answer. In this case the manager

ends the protocol execution and ignores any successive

message related to the same protocol instance.

• An action execution invocation failure occurs when a

manager cannot send the action execution acknowl-

edgement to the leader, while an action execution re-

sponse failure occurs when a manager correctly sent the

action execution message to the leader but it does not

receive an acknowledgement. In both cases the manager

ends the protocol execution and ignores any successive

message related to the same protocol instance. We

emphasise that in the case of non-recoverable actions

that the global execution can be inconsistent.

In our protocol, managers are entrusted to detect a leader

failure. More specifically when the leader is no longer

available managers detect it, a new leader is elected and all

correct global states recovered from the backup managers4.

One should be aware that there are cases in which the

protocol may not make any progress. For instance this is

the case in which the same manager is always granted

permission and always fails. In order to avoid this kind of

livelock the leader always chooses a random manager when

granting permission.

VI. PERFORMANCE

In this section we present the space and time overhead for

our implementation in order to demonstrate its efficiency and

scalability. We have tested our case study components and

used GOANNA for Java 1.5 version running on a 100 Mbit

network of 60 Pentium IV 3.2 GHz machines each with 2

GB of RAM running the Linux operating system

A. Memory Overhead

A manager performs three main functions: (i) checks con-

ditions; (ii) executes our consensus protocol; (iii) executes

state machine actions. Functions (i) and (iii) can be arbitrary

code, but are typically simple boolean expressions or calls

to services. Successful execution of the consensus protocol

requires four message exchanges between a manager and

the leader. The overhead of the exchanged messages are

4We assume that after a fault the leader always stops its execution (this
avoids multiple leaders). Nevertheless, multiple leaders executing at the
same time are detected and the conflict is solved.



Process Components Heap (KB) JVM (MB)

leader 10 317 10

leader 50 476 11

leader 100 499 13

manager 10 698 11

manager 50 775 13

manager 100 916 14

Figure 9. Leader and FSM Manager memory consumption.

FSM Size (KB)

global fsm 3.8

Koala 2.5

Arm 0.9

Crusher 1.1

Figure 10. State machine file size.

summarised in the table of Figure 8 and are negligible. More

specifically, in the worst case a message requires 4 bytes for

each state machine instance (2 bytes for the state and 2 bytes

for the FSM ID) plus 2 bytes for the protocol return code

(see Section V-B1 for details). For instance in our case study

a protocol message requires 6 bytes since we have 1 single

state machine instance.

Table of Figure 9 summarises the memory costs of the

manager and leader. More specifically, we have run one

single leader and a single manager on two separate hosts. We

have tested from 10 up to 100 Koala components plus one

Arm and one Crusher connected to the same manager. In the

worst case, i.e., 100 components running, the manager and

leader memory (both heap and data) is 499KB and 916KB,

respectively5. Thus our approach is appropriate for small

constrained devices.

Table of Figure 10 shows the sizes of global FSM and

each of the generated local FSMs for our case study. The

sizes correspond to sizes of the serialised object for each

FSM.

B. Execution Overhead

In order to study the overall performance of our dis-

tributed implementation, we looked at the time it takes for a

manager to validate a component interaction event (i.e., the

response time).

In order to evaluate the manager response time we have

performed two experiments. In the first experiment we have

5This has been evaluated using the RunTime class which provides
methods that estimate memory usage.

#Koala #Arms #Crusher #Manager Response time (ms)

1 1 1 3 40

10 1 1 12 41

20 1 1 22 40

30 1 1 32 40

40 1 1 42 41

50 1 1 52 42

60 1 1 62 43

Figure 11. Experiment 1: response time (ms).

#Koala #Arms #Crusher #Manager Response time (ms)

600 1 1 12 521.3

1200 1 1 22 540.3

1800 1 1 32 691.1

2400 1 1 42 998.4

Figure 12. Experiment 2: response time (ms).

the following set: (i) one Arm component; (ii) one Crusher

component; (iii) from 1 to 60 Koala components; (iv) each

component runs on a different machine and it is connected

to a local manager; (iv) each component generates random

requests every 500 ms; (v) the total simulation time is 60s.

Effectively we have up to 62 managers running on different

machines and a single leader. The table of Figure 11 shows

the results obtained. As we can see the time remains constant

as the number of managers increases. This is a consequence

of the small amount of information required to perform

the protocol (a few bytes) and the small total amount of

components (62 at most). In the second experiment we

increase the total number of components (i.e., robots) in

the system by using the following settings: (i) a manager

with exactly one Arm component connected to it; (ii) a

manager with exactly one Crusher component connected to

it; (iii) from 10 up to 60 managers running on different

hosts where 60 Koala components are connected to each of

them; (iv) each component generates random requests every

500 ms; (v) the total simulation time is 60s. In the table of

Figure 12 we show the results obtained. These show that our

approach scales gracefully as the number of components is

increased. In fact by increasing the components by 400%

(i.e., from 600 to 2400) the response time increases by

about 80%. It is worth mentioning that there will be a

number of components for which a single leader cannot

guarantee acceptable response times so that a configuration

with multiple leaders may be required.

VII. RELATED WORK

Various languages and generation tools are available to

specify and automatically generate control system imple-

mentations. In [10] the authors use an aspect-oriented ap-

proach in order to generate the global behaviour automati-

cally. Our global state machines are a more structured way

to specify the global behaviour and can be used in property

verification. The authors in [11] propose a monitoring-

oriented approach. System requirements are expressed using

languages such as temporal logic and specifications are ver-

ified against the system’s execution and user-defined actions

can be triggered upon violation of the formal specifications.

Although this approach allows the specification of global

behaviour, it is verified by a centralised server. In contrast,

in our approach all conditions and predicates are executed

locally.

In the area of service-oriented computing, approaches

such as ORBWork [12] provide orchestration of distributed



web services. None of these systems handle dynamic sys-

tems or failures nor do they automatically decompose or-

chestrations into choreographed execution.

In the area of self-adaptive systems, many works suppose

that application components are distributed but few consider

the ramifications of doing so. One exception is the work

of Georgiadis et al. [13] in which every component has a

manager and attempts to maintain architectural constraints

(in response to node failures etc.) by acquiring a global

change lock and applying structural repairs. However, this

approach was not scalable, and only addressed architectural

concerns.

Our approach is related to our previous work presented

in [14], [15] where we automatically distribute a global

state machine specification in order to build a distributed

monitoring system. Although the authors distribute a global

specification the distribution runs on a closed set of compo-

nent instances. Every time a local state machine must move,

it broadcasts a signal to all others to acquire the right to

move the global state. Our approach reduces the amount of

overhead since just one message is needed to acquire the

permission. Moreover it introduces the notion of sets so that

components can leave and join the system at runtime.

The GOANNA consensus protocol is based on Paxos [5],

[8]. The Paxos protocol is used to solve the consensus prob-

lem between a set of nodes. However as described in Section

V-B we have enhanced the protocol with further requests to

implement action execution and introduced timeout events

to ensure recovery in case of failure.

VIII. CONCLUSIONS

We have presented the GOANNA framework which per-

mits logically-centralised adaptive behaviours to be decen-

tralised in a robust, correct fashion. Global behaviours de-

scribed using our state machine language can be decomposed

into state machines local to each host of the distributed

system and executed such that the local state machines

implement the global state machine. A leader is used to

guarantee correctness through a consensus protocol based

on Multi-Paxos. The consensus protocol tolerates the failures

of normal hosts and of the leader. Moreover, the approach

is robust to changing availability of components, which are

permitted to join and leave sets at runtime. Our experiments

show that the approach is efficient in memory and is scalable

to many components, particularly since we do not require

that every component have its own manager.

Future directions include combining our system with ab-

stract modelling tools such as LTSA [16] and PRISM [17] in

order to provide a platform for both analysing and deploying

distributed applications. There is also interesting work to be

done on integrating the protocol fault handling with adaptive

techniques. For example, if a certain component often fails,

a higher-level decision procedure may choose to adapt by

not using that component in future.
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