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Abstract. The increasing complexity of software systems entails large
effort to jointly analyze their non-functional attributes in order to iden-
tify potential tradeoffs among them (e.g. increased availability can lead
to performance degradation). In this paper we propose a framework for
the architectural analysis of software performance degradation induced
by security solutions. We introduce a library of UML models represent-
ing security mechanisms that can be composed with performance anno-
tated UML application models for architecting security and performance
critical systems. Composability of models allows to introduce different
security solutions on the same software architecture, thus supporting
software architects to find appropriate security solutions while meeting
performance requirements. We report experimental results that validate
our approach by comparing a model-based evaluation of a software ar-
chitecture for management of cultural assets with values observed on the
real implementation of the system.
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1 Introduction

The problem of modeling and analyzing software architectures for critical sys-
tems is usually addressed through the introduction of sophisticated modeling
notations and powerful tools to solve such models and provide feedback to soft-
ware engineers.

However, non-functional attributes are often analyzed in isolation. For exam-
ple, performance models do not usually take into account the safety of a system,
as well as availability models do not consider security aspects, and so on. An
early but relevant exception in this domain has been the definition of performa-
bility [19] that combines performance and availability aspects into the same class
of models. With the increasing variety and complexity of computing platforms,
we believe that the task of jointly analyzing non-functional attributes to study
possible dependencies is becoming a critical task for the successful development
of software architectures.
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This paper works towards this goal. It presents a framework to jointly model
and analyze the security and performance attributes of software architectures.
The critical aspect that we tackle is to quantify the performance degradation
incurred to achieve the security requirements. The basic idea is that the solution
of a performance model that embeds security aspects provides values of indices
that can be compared to the ones obtained for the same model (i) without se-
curity solutions, (i) with different security mechanisms and (iii) with different
implementations of the same mechanism. Such comparisons help software archi-
tects to decide if it is feasible to introduce/modify /remove security strategies on
the basis of (possibly new) requirements.

Security is, in general, a complex and cross-cutting concern, and several mech-
anisms can be used to impact on it. In this paper we focus on two common
mechanisms that are: encryption and digital signature.

In order to easily introduce security and performance aspects into software
models we have built a library of models that represent security mechanisms
ready to be composed. Once an application model is built, in order to conduct a
joint analysis of security and performance with our approach it is necessary for
the software designer: (i) to specify the appropriate security annotations (e.g. the
confidentiality of some data), and (ii) to annotate the model with performance
related data (e.g. the system operational profile). Thereafter, such an annotated
model can be automatically transformed into a performance model whose solu-
tion quantifies the tradeoff between security and performance in the architecture
under design. The setting where our approach works is Unified Modeling Lan-
guage (UML) [1] for software modeling and Generalized Stochastic Petri Nets
(GSPN) [15] for performance analysis.

The starting point of this work can be found in [5], where we have introduced
an earlier version of this approach and a preliminary security library of models
expressed as performance models. As envisaged in [5], thereafter we have applied
the approach to real world case studies, and the experimentation phase led us
to modify the approach as well as the security library.

An important aspect lacking in [5] that we tackle in this paper is that the
choice and the localization of the appropriate security mechanisms should be
driven from the system architecture (e.g. features of the communication chan-
nels, physical environment, etc.). For example, a message exchanged between
two components might require encryption depending on whether the commu-
nication channel between the components is a wireless one or not (see Section
5). Hence, the main progress, in comparison to [5], is that here we express se-
curity mechanisms as UML architectural models, and the model composition is
moved on the designer’s side. Thus, our approach allows designers to explicity
explore architectural alternatives for balancing security /performance conflicting
concerns in the architectural phase of the development process.

To validate our approach we have conducted extensive experiments where
we compare the results of our models with the data monitored on a real system.
The promising numerical results that we have obtained significantly support the
prediction capabilities of our approach.
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The paper is organized as follows: in Section 2 we present the related work
and describe the novelty of the approach with respect to the existing literature;
in Section 3 we introduce our approach and the types of analysis that it can
support; in Section 4 we discuss the library of security models and how it is used
at the application level; in Section 5 we present the experimental results that
we have obtained on a real case study; finally in Section 6 we give concluding
remarks and future directions.

2 Related work

The literature offers a wide variety of proposals and studies on the performance
aspects of security, but most of them analyze the performance of existing stan-
dards such as IPsec and SSL. Therefore the analysis conducted in these ap-
proaches remains confined to very specific problems and solutions. However,
noteworthy examples in this direction can be found in [4] [9] [14].

A tradeoff analysis of security and scalability can be found in [16], which
stresses the importance of understanding the security required while minimizing
performance penalties. Our concern is similar to this one because we also target
an analysis of how security solutions impact on system performance. However,
in [16] the analysis is conducted using a specific security protocol (i.e. SSL) and
a limited set of cryptographic algorithms, whereas our framework is intended to
model and analyze more general solutions.

Estimating the performance of a system with different security properties
is a difficult task, as demonstrated in [12], where they emphasize how difficult
is to choose between secure and non-secure Web services, RMI and RMI with
SSL. The authors solve the problem by performing different measurements on
different platforms to elicit guidelines for security setting selections.

There are also several works that use aspect-oriented modeling (AOM) to
specify and integrate security risks and mechanisms into a system model, such
as the one in [8]. An interesting performance study, based on AOM, can be
found in [22] where security solutions are modeled as aspects in UML that are
composed with the application logics, and the obtained model is transformed into
a performance model. This work uses an approach to the problem that is similar
to ours, in that they are both based on model annotations and transformations.
Our work, at some extent, refines the approach in [22] because we target the
problem of representing elementary security mechanisms aimed at guaranteeing
certain security properties, whereas the analysis in [22] is performed only on the
SSL protocol and a set of properties embedded in it. Furthermore this paper
differs from [22] because for each security mechanism we additionally consider
the reasonable implementation options (e.g. the key length of an encryption
algorithm) that significantly impact on the software performance.

The lack of a model-based architectural solution to this problem is the major
motivation behind our work. This paper aims at overcoming the limitations of ad
hoc solutions that estimate the performance of specific security technologies. To
achieve this goal, we propose a framework that manages and composes platform-
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independent models of security mechanisms, thus allowing designers to estimate
and compare the performance of different architectural security solutions for
critical systems.

3 Owur approach

In this section we present a framework that allows us to quantify the tradeoff
between the security solutions introduced to cope with the application require-
ments and the consequent performance degradation.

In Figure 1 the process that we propose is reported. The process has been
partitioned in two sides: on the left side all models that can be represented with
a software modeling notation (e.g. UML) appear; on the right side all models
represented with a performance modeling notation (e.g. GSPN) appear.

Software notation Performance notation

|
(e.g. UML) I (e.g. GSPN)
I
———— I
APPLICATION Security-Annotated |
MODEL |  APPLICATION e
MODEL o |
=]
3 I
0 Security-Enabled PERFORMANCE
= > APPLICATION > MODEL
DD \:\ % MODEL !
—em 3 |
= B e
»| o |
Basic Composed
fechani Mechani. |
Security Library |
|

Fig. 1. A joint process for security and performance goals.

The starting point of the process is an Application Model that is a static and
dynamic representation of a software architecture. For sake of simplification we
assume that such model is annotated with the performance parameters related
to the application (e.g. the system operational profile) (1).

A Security-Annotated model is obtained by introducing security annotations
in the former. Such annotations specify where security properties have to be
inserted, namely which software services have to be protected and how (e.g. the
entity providing a certain service must be authenticated before using it).

The contribution of this paper can be located among the shaded boxes of
Figure 1. A Security Library of UML models is provided; in particular, models
of Basic Mechanisms are combined to build Composed Mechanisms.

! Note that the standard MARTE profile [2] has been adopted to specify performance
parameters in our UML models. However, it is out of the scope of this paper to
provide details of performance annotations, because well assessed techniques exist
for this goal [20].
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The task of Enabling Security consists in embedding the appropriate security
mechanisms in the software architecture. This step is driven by the security an-
notations specified in the application model, and a Security-Enabled Application
Model is finally obtained. As an example, if a security annotation specifies that
data integrity must be guaranteed for a certain service, an additional pattern
with the steps needed for the data integrity mechanism must be introduced in
the architectural model wherever the service is invoked. Such a pattern is one of
the mechanisms modeled in our security library.

A key aspect of this task is the composability of models, and this is achieved in
our approach through two features: (i) entry points for security mechanisms are
unambiguously defined by security annotations, and (ii) mechanism models in
the security library have been designed to be easily composable with application
models (see Section 4.2).

The security-enabled application model is finally transformed into a GSPN-
based Performance Model. This step involves not only a transformation between
modeling notations (?), but an additional task is necessary to appropriately in-
strument the target performance model, because security mechanisms inevitably
introduce additional performance parameters to be set in the model.

The definition of such parameters is embedded in the security library where
they are defined in an application-independent way. For example, the encryption
mechanism introduces additional parameters affecting system performance, such
as the complexity and resource requirements of the encryption algorithm, its
mode of operation (e.g. CBC), the lengths of the keys, etc. However, the task of
enabling security implies the usage of such mechanisms at the application level,
thus they can be influenced by further application-dependent characteristics.
For example, the encryption mechanism efficiency is influenced by the speed of
the CPU executing the encryption algorithm, the length of the message to be
encrypted, etc.

Hence, the GSPN performance model finally generated has to be carefully
parameterized with proper performance data.

The GSPN performance models are solved by SHARPE [11] [21], and the
model evaluation provides performance indices that jointly take into account
both the security and the performance features required for a critical system.

Note that such tradeoff analysis can be conducted on multiple security set-
tings by only modifying the security annotations and re-running the following
steps of our approach. In fact, in Figure 1 we can define a certain multiplicity in
the security annotations to emphasize that different strategies can be adopted
for the same architecture according to different system settings (see Section 5.1).

Finally we observe that several types of analysis can be conducted on the
models built with this approach: (i) a performance model with a set of security
requirements can be compared with one without security to simply study the
performance degradation introduced from certain security settings; (ii) the per-

2 Well consolidated techniques have been exploited to transform software models (e.g.
UML diagrams) into performance models (e.g. GSPN), and readers interested can
refer to [3] for an extensive survey on this topic.
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formance estimates from different performance models can be compared to each
other to study the tradeoff between security and performance across different
architectural configurations.

Note that the latter analysis can be hierarchically conducted by assuming
configurations that are ever more secure. This scenario leads to continuously
raising the security settings, thus allowing us to quantify the amount of system
performance degradation at each increase of security.

4 Enabling Security

The OSI (Open Systems Interconnection) Security Architecture standard [18]
aims at defining, through basic mechanisms and their composition, various prop-
erties of a system belonging to a secure environment.

Based on OSI, in [5] we have introduced a set of performance models for Basic
and Composed Security Mechanisms. An open issue of that prelimary work was
the usage of those models on real applications. After experimenting on real case
studies, we realized that the directives in [18] led us to produce, in some cases,
models that were too abstract to be useful in practice. This consideration has
brought to substantially modify our security models.

In Table 1 a refined set of Basic and Composed Mechanisms, and their de-
pendencies, is illustrated. Each row refers to a Composed Mechanism and each
column to a Basic one. An X symbol in a (4, j) cell means that Basic Mechanism
7 is used to build Composed Mechanism 1.

Digital Digital
Basic|Encryption| Signature | Signature [Decryption
Compose Generation|Verification
Data
Confidentiality X X
Data
Integrity X
Peer Entity
Authentication X
Data Origin
Authentication X
Table 1. Dependencies between Basic and Composed Mechanisms.

The Basic Mechanisms that we consider are: Encryption, which refers to the
usage of mathematical algorithms to transform data into a form that is unread-
able without knowledge of a secret (e.g. a key); Decryption, which is the inverse
operation of Encryption and makes the encrypted information readable again;
the Digital Signature is a well-known security mechanism that has been split
into Generation and Verification, in order to express finer grained dependencies
among mechanisms.

The Composed Mechanisms have been defined as follows. Data Confidential-
ity refers to the protection of data such that only the authorised entity can read
it. Data Integrity assures that data has not been altered without authorisation.
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Peer Entity Authentication is an identity proof between communicating enti-
ties. Data Origin Authentication supports the ability to identify and validate
the origin of a message; it has been defined as a Composed Mechanism although
it depends on only one Basic Mechanism (see Table 1). This choice allows to
interpret the generation of a digital signature as an high level mechanism that
can be used by itself to enable the (possibly future) verification of data origin.

Models of Basic and Composed Mechanisms have been expressed as UML
Sequence Diagrams (see Section 4.1).

In [13] an UML profile, called UMLsec, is presented for secure system devel-
opment. Security properties (i.e. secrecy, integrity, authenticity and freshness)
are specified as tagged values of a common stereotype (i.e. data security). We do
not use the UMLsec profile because the set of models we consider act at a lower
level of abstraction to provide a higher degree of freedom to architectural de-
signers, e.g. about the encryption algorithm and the key lengths. Ultimately we
intend to provide instruments for architecting security and performance critical
systems on the basis of quantitative estimates.

4.1 Security Library

In this section we concentrate on the security mechanisms identified in Table
1. Some preliminary operations, such as the generation of public and secret
keys and the process of obtaining a certificate from a certification authority, are
executed once by all software entities involved in the security annotations.

In Figure 2(a) the generation of public and private keys is illustrated: a
component sets the key type (setKeyType) and the key length (setKeyLenght)
and generates the public (generatePKey) and the private (generateSKey) keys.

In Figure 2(b) the process of obtaining a certificate from a certification au-
thority is shown: a component requiring a certificate (reqCertificate) sends its
information and the public key; the certification authority checks the credentials
(checkEntityInfo) and, if trusted, generates the certificate (generateCertificate)
and sends it back (sendCertificate) to the software entity.

Figure 3 shows the UML Sequence Diagram modeling Encryption. Firstly
the sender of the message decides the type of algorithm to use (setAlgorithm-
Type) and the key length (setKeyLength). The encryption can be of two different
types: asymFEncrypt means asymmetric encryption (i.e. by public key), whereas
symEncrypt indicates symmetric encryption (i.e. by a shared secret key).

For asymmetric encryption the sender sets the padding scheme it requires
(setPaddingScheme) and verifies the receiver’s certificate if it is not already
known. Finally, the encryption algorithm (encryptAlgorithm) is executed on the
message (msg) with the public key of the receiver (P(R)).

For symmetric encryption the sender sets the algorithm mode (setAlgorith-
mMode), performs a key-exchange protocol if a shared key is not already ex-
changed, and requires the exchange of certificates. We have modelled the ISO/TEC
11770-3 key exchange protocol that achieves mutual authentication and key ex-
change. This requires both parties to generate a key that can be combined to
form a single session key. Three messages are exchanged. The first one is sent
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C: Component
) CA: Certification
‘
sd:IgenerateKeys

sd: getCertificate | | |

reqCertificate(compInfo, P(C)) |

|
| checkEntityInfo()
k
T

|
[
|
|
opt T
| | generateCertificate(compInfo+CAinfo,
|
|
|
|
T

setKeyType()

setKeyLength()

[trusted]
generatePKey(type, length) | P(C), P(CA))

sendCertificate(compCertificate) I
|
|

generateSKey(type, length)

gt

(a) generateKeys (b) getCertificate

Fig. 2. UML Sequence Diagram of some preliminary operations.

by the sender S and contains the sender information, the key generated by it,
and a nonce; the message containing all this information is encrypted with the
public key of the receiver. The second one is sent by the receiver R and contains
the receiver information, the key generated by it, the nonce previously sent by
S and a new nonce generated by R; the message containing all this informa-
tion is encrypted with the public key of the sender. The third one is sent by
the sender and contains the nonce sent by the receiver. Finally, the encryption
algorithm (i.e. encryptAlgorithm) is executed on the message (msg) with a ses-
sion key obtained combining the keys generated by the sender and the receiver
(K(Ks, Kr)).

Figure 4(a) shows the the UML Sequence Diagram modeling the Digital Sig-
nature Generation. First, the hash function (setHashFunction) algorithm must
be specified, then the digest generated (generateDigest) and finally the encryp-
tion algorithm (encryptAlgorithm), by using the entity private key, applied on
the digest.

Figure 4(b) shows the UML Sequence Diagram modeling the Digital Sig-
nature Verification. A message (msg) and the digital signature (digitSign) are
received as inputs. Two operations are performed: the first one is to calculate
the digest (execHashFunc); the second one is the actual execution of the en-
cryption algorithm applied on the input digital signature producing a forecast
of the real signature (encryptAlgorithm). The last computation involves the ver-
ification of the digital signature (verifyDigitSign) which compares the forecast
digital signature with the received one, in order to confirm the verification.

For sake of space the UML Sequence Diagram modeling the Decryption is
not shown but it can be summarized as follows: after receiving the encrypted
message, the algorithm type and the key length are extracted, and the decryption
algorithm is executed to obtain the plain text.
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R: Receiver
T
| |
‘ setAlgorithmType() :
I
! setKeyLength() |
|
alt ; |
[asymEncrypt] | |
I
setPaddingScheme() |
|
opt ; T
[Reertificate 4notKnown] ‘
I
| |
I getCertificate() I
| |
: sendCertificate() :
I verifyRCertificate() :
|
I |
;‘ |
‘ encryptAlgorithm(msg, P(R)) |
S ]
[symEncrypt] : |
I
‘ [
! setAlgorithmMode() |
[ |
t T
opt | I
[sharedKeyﬁnotEﬁ‘(changed] |
| I
| sendCertificate() I verifyCertificate()
|
|
|
[opt] |
[Scertificate_notKnown] .
sendCertificate()

|
| verifyCertificate()
|

opt |
[Rcertificate notKnown]

| generateKey()
I

| encryptAlgorithm(msg={Sinfo, K(S), NonceS}, P(R))

| encryptAlgorithm(msg={Rinfo, K(R), NonceS,NonceR}, P(S))

generateKey()

|
I send(msg={NonceR})
I

:' encryptAlgorithm(msg, K(K(S),K(R)))

Fig. 3. UML Sequence Diagram of the Encryption mechanism.
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send(msg, digitSign)

C: Component

T
I

! setHashFunction() |
| ) ‘ encryptAlgorithm
| generateDigest() I (digitSign, P(C))

|

|

I

| encryptAlgorithm(digest, S(C)) I verifyDigitSign()
|
|

execHashFunc(msg)

-

(a) Digital Signature Generation (b) Digital Signature Verification

Fig. 4. UML Sequence Diagram of the Digital Signature mechanism.

4.2 Security-Enabled Application Model

In this section we briefly discuss how the Composed Mechanisms of Table 1 are
annotated and embedded in the application model to obtain a Security-FEnabled
Application Model.

The Data Confidentiality mechanism can be annotated on a software con-
nector, and it means that data exchanged between the connected components
are critical and need to be kept secret.

In Figure 5 we illustrate how the Composed Mechanism is enabled in the
application model. On the left side the security annotation is added in the static
architectural model (i.e. UML Component Diagram) on the software connector,
and it means that client and supplier components exchange critical data. On the
right side all Basic Mechanisms used to build the composed one (see Table 1)
are embedded in the dynamic architectural model (i.e. UML Sequence Diagram),
hence data are encrypted by the client component before their exchange and later
decrypted by the supplier component.

Data <<component>> C: Client S: Supplier
Confidentiality Client Component E Component Component
~ T T
AR data: dataType ) |
ref |
Encryption |
‘ d(data)* ‘
void op(dataType dataName) send(data) |
| 1
<<component>> E | ref
Supplier Component | Decryption
| |
| |
| I
op(data)

Fig. 5. Enabling Data Confidentiality mechanism.
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The Peer Entity Authentication and Data Integrity mechanisms are both
obtained by the generation of the digital signature followed by its verification,
as reported in Table 1. In fact they have the same modeling structure in terms
of the sequence of operations. The difference is in the content of the message
used to generate the digital signature. The Peer Entity Authentication can be
annotated for software components and the content of the message is represented
by its credentials, whereas Data Integrity can be annotated for attributes and
the message is represented by application specific data.

Finally, the Data Origin Authentication mechanism can be annotated on
attributes and means that data are critical and need to be authenticated. It
depends on the digital signature generation, as reported in Table 1.

5 Experimental validation

In this section we apply our approach to a real case study: a large distributed
system in the domain of cultural asset management, built in the context of the
CUSPIS project [7]. This experimental validation highlights the potential of our
approach (3).

We denote by SC; a system configuration that represents the required se-
curity settings to be included in the application model. It is obvious that the
same application model may have multiple configurations, each leading certain
security characteristics to the system.

For sake of experimentation we have numbered the system configurations in
a hierarchical way SCy, SC1i,..., SCy, so that for configuration SC; the required
security settings properly include all the ones adopted for SC; with i > j. SCq
represents the system without any security setting. Such hierarchical organiza-
tion of system configurations has been adopted in our case study in order to
stress the progressive performance degradation introduced by the increasing of
security.

However, our framework can be used to study the tradeoff between security
and performance across different system configurations, not strictly ordered on
raising security settings. For example, two generic configurations SC; and SC}
may share certain settings but, at the same time, they may differ for other
settings.

5.1 The CUSPIS system

The CUSPIS system aims to improve the protection of cultural assets (CA),
such as sculptures and paintings, through the use of computer-based strategies
(e.g. cryptography and satellite tracking). Our experimentation focuses on two
services: cultural asset authentication and cultural asset transportation (*).

3 For sake of space we only report the most relevant results among all the evaluations
carried out.

4 For sake of space we report only the authentication scenario, whereas we refer to [6]
for the transportation one.
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Cultural asset authentication aims to ensure that visitors to an exhibition, or
potential buyers at an auction, can obtain cultural asset information and verify
its authenticity (see [17] for details). Authentication is achieved by assigning a
Geo Data (GD) tag containing information referring to each asset. A tag must be
produced by a qualified organisation (e.g. the sculptures producer) to improve
the asset protection.

Our experimentation in the cultural asset authentication service focuses on
the GD generation scenario. It is performed in the following way: the qualified
organisation generates the GD information (genGDinfo) and sends it (send) to
a database that stores it (storeGDinfo).

The analysis of the GD generation scenario leads us to define two different
system configurations (i.e. SCy and SC5), as motivated in the following.

Figure 6(a) shows the Security-Enabled Application Model for the configura-
tion SCi: the qualified organisation provides Data Origin Authentication of the
gd data, that is uploaded to a database. The uploading does not require any
security solution since we assume that it is performed through a secure channel.
The operation that returns that value (genGDinfo()) is defined as a critical op-
eration and tagged with a star in the UML Sequence Diagram of Figure 6(a).
A “ref” fragment that points to the Digital Signature Generation mechanism is
added, as stated in Table 1.

The system configuration SC; is not security-wide when the qualified or-
ganisation device and the database communicate through an insecure network;
the configuration SCs solves this problem by adding Data Confidentiality to the
software connector requiring the storeGDinfo() operation. The exchange of data
is performed through the send() operation that is defined as a critical operation,
and it is tagged with a star in the UML Sequence Diagram of Figure 6(b). The
references to the Encryption/Decryption mechanisms are added, as stated in
Table 1.

5.2 CUSPIS implementation details

Experiments for the CUSPIS system have been performed by running the same
application code on two machines. The first machine has an Intel(R) Core2
T7250 CPU running at 2GHz with 2GB RAM, and runs the Windows Vista
operating system. The second machine has an Intel Pentium4 3.4Ghz with 2GB
RAM, and runs the Windows XP operating system.

In configuration SC; the digital signature was performed by using SHAw-
ithRSA with different key sizes of 1024, 2048 and 4096 bits. In configuration
SC5 the encryption/decryption was performed by using an AES algorithm with
a 256-bit key size in CBC mode.

5.3 Applying our approach to CUSPIS

In this Section we describe the experimental results that we have obtained from
applying our approach to the CUSPIS system. From a performance analysis
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Fig. 6. Security-Enabled Application Models for GD generation.
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viewpoint, our experiments follow standard practices: construct the model, vali-
date the model by comparing model results with real numerical values obtained
from monitoring the implemented system while varying model parameters [10].
The validation of the GD generation scenario undergoes generic performance
and security goals of a qualified organisation, which can be summarised as fol-
lows: (i) the number of tags generated per second must be as high as possible (a
performance issue); (ii) tags must be hard to compromise (a security issue).
Based on the description in Section 5.1, two different GSPN performance
models are built (°), one for each configuration considered: SC; and SCs. Tables

2 and 3 report the results that we have obtained, respectively, for configurations
SCy and SCs.

Model Solution| Implementation ||Model Prediction

KeySize Results Monitoring Data Error

(byte) (tags/sec) (tags/sec) (%)

1024 17.45 17.3 0.86

Platform 1| 2048 9.32 9.11 2.25
4096 1.98 1.92 3.03

1024 17.13 16.61 3.03

Platform 2| 2048 8.45 8.11 4.02
4096 1.85 1.78 3.78

Table 2. GD generation - analysis of configuration SC1.

The columns of Table 2 can be divided into three sets. The first column
reports the size of the key used in the encryption algorithm. The second set
of columns reports the experimental results: the number of tags per second
obtained from the model solution, the same values as monitored on the real
implementation. Finally the last column reports the prediction error, expressed
in percentage, of the model results in comparison to the monitored ones.

Model Solution| Implementation [|Model Prediction

KeySize Results Monitoring Data Error

(byte) (tags/sec) (tags/sec) (%)

1024 3.43 3.29 4.08

Platform 1| 2048 2.93 2.85 2.78
4096 1.35 1.33 1.48

1024 4.16 4.09 1.68

Platform 2| 2048 3.33 3.2 3.90
4096 1.38 1.34 2.90

Table 3. GD generation - analysis of configuration SCs.

The rows of Table 2 can be divided into two sets, one for each platform
considered (see Section 5.2). Within each set, numbers are reported for three
values of the key size. For example, the first row of the Table 2 indicates the

® GSPN performance models are shown here [6].



Analyzing Tradeoffs between Software Security and Performance 15

GD generation for the configuration SC; on Platform 1 with a 1024-bit key
size: the model predicts that the system is able to generate 17.45 tags/second,
the monitoring of the implementation reveals that the system actually generates
17.30 tags/second, and this leads to a gap between the model and the application
of about 0.86%. Similarly promising results have been obtained for other key sizes
and on both platforms, as shown in the last column of the Table, where the error
never exceeds 4.02%.

Table 3 is similar to Table 2 for the organization of columns and rows; it
collects the results for the configuration SCs. For example, the first row of Table
3 indicates the GD generation for the configuration SCy on Platform 1 with a
1024-bit key size: the model predicts that the system is able to generate 3.43
tags/second, the monitoring of the implementation reveals that the system ac-
tually generates 3.29 tags/second, and this leads to a gap between the model
and the application of about 4.08%. In the Table this latter value is the worst
one, in fact better predictive results have been obtained for other key sizes ons
both platforms, as shown in the last column of the Table 3.
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Fig. 7. GD generation throughput.

In both tables the number of tags per second for the model solution was
obtained by measuring the throughput value of the ending timed transition in
both GSPN models. Besides, the corresponding metrics has been monitored on
the actual implementation of the system. All these measures have been obtained
with the system under workload stress, which occurs when the arrival rate is
high enough to make the system always busy.

The analysis of workload for both SC; and SC5 configurations is shown
in Figure 7. The curves are obtained by solving the GSPN models under the
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configuration of Platform 1 with a key size of 1024 byte (i.e. the first row of
Tables 2 and 3). In particular, on the x-axis the rate A of arrivals to the system
is reported; on the y-axis the throughput of the ending timed transition is shown.
Note that in SC; the maximum throughput of 17.45 (see Table 2) is achieved
for A = 23 requests/second, whereas in SC5 the maximum throughput of 3.43
(see Table 3) is achieved for A = 7 requests/second.

From the comparison of Tables 2 and 3 some interesting issues emerge with re-
gard to the performance degradation induced in SC5 by raising security settings
(i.e. by introducing the additional Data Confidentiality mechanism). In Table 4
we have reported the percentage of performance degradation obtained (for model
results and for monitored data) when moving from SC; to SC5 configuration
in both platforms while varying the key size. For example, the value 80.34% in
the upper leftmost cell of the Table is obtained as 100 — (3.43 x 100)/17.45 (see
Tables 2 and 3).

Model Results|Monitored Data|[Model Results|Monitored Data
KeySize|| Platform 1 Platform 1 Platform 2 Platform 2
(byte) (%) (%) (%) (%)
1024 80.34 80.98 75.71 75.38
2048 68.56 68.71 60.59 60.54
4096 31.82 30.73 25.40 24.72

Table 4. GD generation: from SC; to SCs.

We note that our model consistently provides almost the same amount of
performance degradation as the one observed in practice. This further supports
the validity of our approach. An interesting consideration is that for smaller val-
ues of the key size the performance degradation is more dramatic. This is due to
the fact that this key size affects the execution time of the Data Origin Authenti-
cation mechanism that is part of both configurations. Hence, while growing this
size, the latter mechanism dominates in terms of execution time with respect to
the Data Confidentiality, executed only in SC5, whose execution time does not
vary with this key size.

6 Conclusions

In this paper we have introduced a framework to support the analysis of soft-
ware architecture performance degradation due to the introduction of security
mechanisms. Such a framework is that it is able to numerically quantify the sys-
tem performance degradation while varying the adopted security solutions. This
type of analysis can in fact support many decisions of software architects that
span from simply evaluating if such performance degradation can be reasonably
accepted from users, to choosing among different security solutions the one that
provides the best tradeoff between security and performance properties.

A peculiar characteristic of our approach is the introduction of models for
Basic Security Mechanisms. With this modular approach it is possible to study
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the performance degradation introduced by any meaningful combination of these
(and possible newly built) security mechanisms. By pushing this concept ahead,
a more complex type of analysis can be performed on models built by multiple
Composed Mechanisms to represent the specification of an existing protocol,
such as SSL. In this case an interesting study would be to observe how our
models estimate the performance indices, and compare these results to what
claimed in the corresponding protocol specifications.

As shown in the experiments, our architectural models very promisingly and
quite accurately predict the performance of critical systems equipped with dif-
ferent security settings and implementation options. The results that we have
obtained on our case study are somehow quite surprising in terms of percent-
age of degradation that can be introduced even from common security settings.
Furthermore, we have been able to quantify the difference of degradation across
platforms that, in some cases, achieves non-negligible thresholds.

The security mechanisms we consider (i.e. encryption and digital signature)
can be seen as test beds for more complex security concerns. Modern applications
may have to face with larger security vulnerabilities, and strategies for mitigating
most of such vulnerabilities are cross-cutting and difficult to encapsulate (e.g.,
prevention of cross-site scripting errors). In this direction, our framework has
been conceived to enable the modeling and analysis of security patterns that
do not break the defined architectural abstraction level. In other words, the
complexity of a pattern that implements a certain security strategy is not a
problem on our framework as long as it can be (even piecewise) plugged into
the application model. Moreover, such patterns can also spread from static to
dynamic features of the system architectural model (e.g. see Figure 5).

In the near future we plan to automate the tradeoff analysis of the security
configurations by automatically exploring the trade space. Such automation is
feasible because performance models embedding security properties are gener-
ated once and the exploration of the trade space can be automatically performed
by instrumenting the model with different numerical values for the input param-
eters. Besides, we devise to apply our approach to other real world examples in
order to assess the scalability of the framework.

We consider this work as a starting point for studying even more sophisti-
cated tradeoffs between security and performance. We plan to introduce into our
evaluations the costs of security solutions as an additional attribute that very
often affects software architects’ decisions.

In the long term, it is of great interest to study the tradeoff between security
and other non-functional attributes, such as availability. For example, addressing
the problem of quantifying and locating data replicas for availability purposes
without heavily affecting the security of the system would be crucial in certain
domains.
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