DESERT: a Decentralized Monitoring Tool Generator

Paola Inverardi and Leonardo Mostarda
University of LAquila, Computer Science Department , LAquila, Italy
(inverard, mostarda)@di.univaq.it

ABSTRACT

This paper presents the tool DESERT that allows the gen-
eration of decentralized monitoring systems for component
based applications.

Categories and Subject Descriptors: D.2.5 [Testing
and Debugging |: Monitors

General Terms: Security and Reliability.

Keywords: Distributed Monitoring System, Enforcement
Mechanism.

1. INTRODUCTION

A monitoring system is a tool that: (i) gathers system
information; (ii) interprets the gathered information; (iii)
after interpretation can undertake a set of reaction policies.
Modern monitoring tools are used to increase security [7], de-
pendability [8] and performance [9]. They are also used for
debugging and testing purposes. Moreover they can imple-
ment part of the system functional requirements (i.e., they
can build a control mechanism [1]).

In this paper we present the DESERT tool that allows
the generation of decentralized monitoring systems for com-
ponent based applications. We allow the specification of
a global state machine that models the correct interacions
among components and we use the components’ interfaces
to derive one filter for each component. Each filter locally
monitors violations of the global property and undertakes
reactions accordingly. Different reaction policies can be de-
fined. For instance, the isolation reaction policy is applied
to a component that misbehaves for malicious purposes thus
enhancing system security. Retry, rollback and rollforward
can be used to recover from a component misbehavior thus
enhancing system dependability. Logging and tracing poli-
cies can expose the system state and can be used for testing
purposes.

While monitoring approaches tend to locally collect data
and forward them to higher entities, in our approach each
filter locally performs all checks. In particular filters only
exchange a small amounts of control data to simulate the
global state machine.

The advantage of our approach is its distributed nature.
Filters allow the monitoring of complex applications (e.g.,
wireless sensor and ad-hoc applications) where there is no a
centralized point to which all information flows.

Copyright is held by the author/owner(s).
ASE’07, November 5-9, 2007, Atlanta, Georgia, USA.
ACM 978-1-59593-882-4/07/0011.

529

<<device>>:Minisfry server

<<device>>:Owner

(_oageéepr|

ol

~09 Securi _adaptor
Local st \e Local Local state - .
GTA | Q& machine lobal state ™" ety
" Local state| 9 N
- machine machine

<<device>>:ABU1 GTA
Local state QF. monitorin
machine
<<device>>
wireless

Figure 1: The CUSPIS system specification

<<device>>:PDA1

=
()

Sensor data

renter acquisition

Local state
machine

<<device>>
sensor

<<device>>: H

<<device>>:gps humidity sensor

The DESERT tool has been applied to generate decen-
tralized intrusion detection systems for both mobile [6] and
wired [3] infrastructure. It has been applied as an enforce-
ment mechanism in the area of component based software
engineering [5]. Recently, it has been used to enhance sys-
tem dependability [4].

In the following we sketch all steps needed for a monitoring
system generation, i.e., (i) component interface definition
(i.e., system model definition); (ii) state machine definitions
(i-e., property definitions); (iii) front-end application; (vi)
back-end application. Each step is automatised through our
tool.

2. THE DESERT TOOL

Component interfaces are described by means of an Inter-
face Description language (IDL). Our IDL extends common
ones (e.g. CORBA and RMI IDLs) with the definition of
required services. Therefore, a component that always per-
forms the client/server role defines only required/provided
services while a component that performs both roles has
both types of services. The user who specifies the moni-
toring tool can add special variables, procedure and func-
tion declarations to a component interface. Variables can
be used for the property definition since they are an ex-
pressive mechanism to store system history. Procedures and
functions can be used to update variables, can be used for
the global interaction property definition and can be used
to specify reaction policies.

We monitor four types of events: (i) client service invoca-
tion; (ii) server incoming request; (iii) server returned value;
(vi) client incoming result?.

!The black-box nature of the components means that our
events can be only observable messages exchanged among
them.

The correct sequence of events observed in the system
(i.e., the global interaction property) is specified by means
of state machines. As we show in Figure 1 our state machine
language permits to define two types of state machines, i.e.,
local and global ones.

A local state machine is related to exactly one interface
definition (e.g. C') and models the correct interactions of a
C' component type. A global state machine has the same
syntax of the local one but can include events observed on
different components. Each state machine can have a related
time-out. This specifies the amount of time by which any
transition must be applied.

In Figure 1 we show the CUSPIS deployment diagram
[2] and both local and global state machines. This system
is built to perform the secure transport of cultural assets.
The ABU1 device contains the GTA monitoring component
that monitors the sensors inside a cultural asset package.
This check allow us to avoid having to unwrap the package.
The local state machine associated to the GTA monitoring
component: (i) checks that every k seconds the component
reads the sensor data; (ii) ensures the consistency of the
sensor data; (iii) ensures that data is forwarded to a central
unit. The ministry, the renter and the GTA certification
component produce digital certificates for the cultural asset
transportation. A global state machine is used to gather
events scattered over these three components, to correlate
them and verify the correct certificate generation.

The DESERT component (see Figure 2) can be applied
locally to each component host and is composed of a front-
end and multiple back-ends. It takes as input a component
name (e.g, C), the interfaces definition, the C-local state
machine, the global one and outputs a C-local filter for a C-
component type. The filters realise a distributed monitoring
system that ensure the properties specified by the state ma-
chine. In particular each filter locally checks each local state
machine and cooperates with the remaining ones to simulate
the global one. It is worth noticing that while interfaces and
state machines have to be specified by a user, the filter gen-
eration is completely automated by the front-end and the
application of a back-end.

In the following we describe the application of DESERT
front-end and back-ends to the renter component. The
front-end (see Figure 2) is composed of the following compo-
nents: (i) parser; (ii) semantic controller; (iii) local automa-
ton generator. The parser and semantic controller performs
all syntactic and semantic checks, respectively. The local au-
tomaton generator performs the following steps: (i) extracts
from the global state machine a ministry-local one (in the
following referred to as ministry local projection); (ii) en-
riches this ministry-local state machine with synchroniza-
tion messages. The state machine obtained in (i) contains
only events defining ministry-local interactions. In (ii) we
enrich this state machine with synchronization messages in
order to simulate the global one.

The local state machine and the local projection are im-
plementation independent and can be translated in differ-
ent filter implementations. We have implemented different
back-ends (e.g., RMI , CORBA and so on) that take as in-
put a component name and the related local state machines
and output a filter implementation for a specific communi-
cation layer. For instance for distributed applications where
the components communicate by using the CORBA middle-
ware we have implemented a CORBA back-end. This back-

530

Front-end _
: :Ministry server
<<device>>:Owner w | parser
; DB Secumy
oot | Sentantic adaptor [Secury |
filter ! icontroller filte —
filter i DESERT ilte
GTA i Local
certification | filter jautomatori
DESERT generator <<device>> GTA
’ v ABU1 filter | monitoring
<<device>> PDAL Back- [DESERT }|—
ends
f'It [« DESERT | | | Sensor data <<device>>
er Local state acquisition wireless
machine
_ renter
B | =
sensor | || humidity sensor

Figure 2: DESERT tool application

end automatically produces a new CORBA component (the
filter) that is interposed between the component communi-
cations and the environment. The filter exports all services
required by the component it resides on. Moreover, it pro-
vides to the environment all services implemented by the
component it resides on. In this way the component based
application is not affected by the filter insertion.

At run-time a filter captures all events locally observed
on the component it resides on. It verifies that the events
comply with both local and projection state machines and
sends the synchronization messages (if any). In case of a
property violation a filter can apply different reaction poli-
cies and can require cooperations with other ones to enforce
the property specified by the state machines.

3. CONCLUSION

The DESERT generator allows the generation of distributed
monitoring systems for component based applications. Lo-
cal state machines permit the implementation of scalable
monitoring systems suitable for mobile applications. The
introduction of a global state machine allows us to generate
a more effective monitoring system that correlates informa-
tion scattered over several components.

REFERENCES

N. Delgado, A. Q. Gates, and S. Roach. A Taxonomy and
Catalog of Runtime Software-Fault Monitoring Tools. IEEE
TSE journal, 30(12), 2004.

European Commision 6th Framework Program - 2nd Call
Galileo Joint Undertaking. Cultural Heritage Space
Identification System (CUSPIS). www.cuspis-project.info.

P. Inverardi and L. Mostarda. A distributed intrusion detection
approach for secure software architecture. In EWSA, 2005.

P. Inverardi and L. Mostarda. A distributed monitoring system
for enhancing security and dependability at architectural level.
In book chapter of Architecting Dependable Systems IV, 2007.
P. Inverardi, L. Mostarda, M. Tivoli, and M. Autili. Automatic
synthesis of distributed adaptors for component-based system.
In ASE, 2005.

L. Mostarda and A. Navarra. Distributed inutrusion detection
systems for enhancing security in mobile wireless sensor
networks. Internation Journal of Distributed Sensor
Networks., 2007.

J.-M. Orset, B. Alcalde, and A. Cavalli. An EFSM-based
intrusion detection system for ad hoc networks. In ATVA 2005.
K. Sen, A. Vardhan, G. Agha, and G. Rosu. Effecient
decentralized monitoring of safety in distributed system. ICSE,
2004.

M. Taufer, P. Cicotti, , and A. Chien. Dgmonitor: a
performance monitoring tool for sand-box based desktop grid
platforms. In PMEO-PDS 2004, 2004.

