Synthesis of Correct and Distributed Adaptors for
Component-based Systems: An Automatic Approach

Paola Inverardi, Leonardo Mostarda, Massimo Tivoli, and Marco Autili
Dept. of Computer Science, University of LAquila
LAquila, Italy
inverard@di.univag.it, mostarda@di.univag.it, tivoli@di.univaq.it,
marco.autili@di.univag.it

ABSTRACT

Building a distributed system from third-party components
introduces a set of problems, mainly related to compatibility
and communication. Our approach to solve these problems
is to build an adaptor which forces the system to exhibit only
a set of safe or desired behaviors. By exploiting an abstract
and partial specification of the global behavior that must
be enforced, we automatically build a centralized adaptor.
It mediates the interaction among components by both per-
forming the specified behavior and, simultaneously, avoiding
possible deadlocks. However in a distributed environment
it is not always possible or convenient to insert a central-
ized adaptor. In contrast, building a distributed adaptor
might increase the applicability of the approach in a real-
scale context. In this paper we show how it is possible to au-
tomatically generate a distributed adaptor by exploiting an
approach to the definition of distributed IDS (Intrusion De-
tection Systems) filters developed by us to increase security
measures in component based systems. Firstly, by taking
into account a high level specification of the global behav-
ior that must be enforced, we synthesize a behavioral model
of a centralized adaptor that allows the composed system
to only exhibit the specified behavior and, simultaneously,
avoid possible unspecified deadlocks. This model represents
a lower level specification of the global behavior that is en-
forced by the adaptor. Secondly, by taking into account the
synthesized adaptor model, we generate a set of component
filters that validate the centralized adaptor behavior by sim-
ply looking at local information. In this way we address the
problem of mechanically generating correct and distributed
adaptors for real-scale component-based systems.

Categories and Subject Descriptors: D.2 [Software En-
gineering]: Miscellaneous

General Terms: Design, Algorithms.

Keywords: Component Based Software Engineering, Com-
ponent Assembly, Component Adaptation.

Permission to make digital or hard copies of all or part of this work for

1. INTRODUCTION

Reuse-based software engineering is becoming the main
development approach for business and commercial sys-
tems. Nowadays, a growing number of software systems
are built as composition of reusable or Commercial-Off-The-
Shelf (COTS) components. Component Based Software En-
gineering (CBSE) is a reuse-based approach which addresses
the development of such systems. In this context, one of the
main goals of CBSE is to compose and eventually adapt
loosely coupled independent components to make up a sys-
tem [2, 8]. Adaptation of software components is an im-
portant issue in CBSE; building a distributed system from
reusable or COTS components introduces a set of problems,
mainly related to compatibility and communication. Often,
components may have incompatible or undesired interac-
tions. One widely used technique to deal with these prob-
lems is to use adaptors. They are additional components in-
terposed between the components forming the system that
is being assembled. The intent of the adaptors is to moder-
ate the communication of the components in a way that the
system complies only to a specific behavior.

Our existent approach [7] (implemented in the SYNTHE-
SIS tool) to solve these problems is to build an adaptor
which forces the system to exhibit only a set of safe or de-
sired behaviors. For example, the adaptor forces the system
to exhibit only the subset of deadlock-free and/or explic-
itly specified wanted behaviors. By exploiting an abstract
and partial specification of the global behavior that must
be enforced, we automatically build a centralized adaptor.
It mediates the interaction among components by both per-
forming the specified behavior and, simultaneously, avoiding
possible unspecified deadlocks.

However in a distributed environment it is not always pos-
sible or convenient to insert a centralized adaptor. For ex-
ample, existing legacy distributed systems might not allow
the addition of a new component (i.e., the adaptor) which
coordinates the information flow in a centralized way. The
coordination of an increasing number of components can
cause loss of information or increase the response time of
the centralized adaptor. In contrast, building a distributed
adaptor might increase the applicability of the approach in

personal or classroom use is granted without fee provided that copies are? real-scale context.

not made or distributed for profit or commercial advantage and that copies

In this paper we show how it is possible to automatically

bear this notice and the full citation on the first page. To copy otherwise, to generate a distributed adaptor by exploiting an approach [6]
republish, to post on servers or to redistribute to lists, requires prior specific (implemented in the DESERT tool) to the definition of dis-

permission and/or a fee.
ASE’05,November 7-11, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-993-4/05/0013$5.00.

tributed IDS (Intrusion Detection Systems) filters developed
by us to increase security measures in component based sys-

tems. It is a specification-based approach to detect intru-
sions at architectural level. It is decentralized. That is,
given a global policy for the whole system (i.e. an admis-
sible global behavior) it automatically generates a monitor-
ing filter for each component that looks at local information
of interest. Filters then suitably communicate in order to
carry on cooperatively detection of anomalous behavior and
enforcement of the global policy.

The basic idea the DESERT approach is based on might
be used to derive distributed component adaptor. By ex-
ploiting a concrete and complete specification of the global
behavior that must be enforced, it might be possible to gen-
erate a set of component filters that, looking at local infor-
mation, validate the specified behavior. In contrast with our
existent approach to component adaptation, this second ap-
proach assumes that the specification of the global behavior
(to be validated) includes also all possible deadlock-free in-
teractions. In other words, unlike our existent approach, the
second one cannot deal with deadlocks in an automatic way.
Neither is ideal. Building a distributed adaptor requires a
lower level and complete specification of the global behavior
that must be enforced. For example, all possible deadlock-
free interactions has to be explicitly specified as a part of
the complete specification. Due to the high complexity of a
real-scale system, often, it is impossible to provide one with
such a specification. We address these problems by suitably
combining our existent approaches to component adaptation
and to the definition of distributed IDS filters.

Firstly, by taking into account a high level specification
of the global behavior that must be enforced, we synthesize
a behavioral model of a centralized adaptor that allows the
composed system to only exhibit the specified behavior and,
simultaneously, avoid possible unspecified deadlocks. This
model represents a low level specification of the global be-
havior that is enforced by the adaptor. Secondly, by taking
into account the synthesized adaptor model, we generate a
set of component filters that validate the centralized adap-
tor behavior by simply looking at local information. In this
way we address the problem of mechanically generating cor-
rect and distributed adaptors for real-scale component-based
systems.

The two approaches take advantage of each other. In
fact, the combined approach is applicable in situations in
which considering only one of them is not practically fea-
sible. DESERT permits to derive a distributed implemen-
tation of the centralized adaptor. Moreover, it allows us
to remove the deployment’s constraints that SYNTHESIS
imposes on the adaptor in order to integrate it with the
system [7]. This allows one to adapt complex applications
where no centralized point of information flow exists or can
be introduced. On the other hand, SYNTHESIS allows a
higher level of abstraction in specifying the globally defined
behaviors by avoiding the non-trivial (or often impossible)
DESERT-user’s task of specifying them. Moreover, SYN-
THESIS enables DESERT to deal with deadlocks without
requiring a specification of the deadlock-free interactions.
This is possible because SYNTHESIS automatically derives
a deadlock-free specification of the globally defined behaviors
that must be enforced.

This paper is a short version of an existent technical re-
port [4] where we report and compare related work, and
validate the approach by means of an industrial case-study.

The reminder of the paper is structured as follows: Sec-

406

tion 2 provides background to the problem. Section 3 de-
scribes our combined approach. Section 4 concludes and
discusses future work.

2. BACKGROUND

In this section we discuss the background needed to un-
derstand the approach that we describe in Section 3.

2.1 The reference architectural style

This section describes our reference architectural style.
Within this architectural style, we considered three kinds
of system configuration concerning with (i) a system with-
out adaptors, (ii) a system in which a centralized adaptor
appears and (iii) a system in which distributed adaptor ap-
pears.

This architectural style is a layered architectural model in
which components can request services of components above
them, and notify components below them. We assume each
component has a top and bottom interface. Connectors be-
tween components are synchronous communication channels
defining a top and bottom interface too. The top (bottom)
interface of a component may be connected to the bottom
(top) interface of one or more connectors.

Components communicate by passing two types of mes-
sages: notifications and requests. A notification is sent
downward, while a request is sent upward. We will also dis-
tinguish between two kinds of components: functional com-
ponents and coordinators (i.e., adaptors). Functional com-
ponents implement the system’s functionality, and are the
primary computational constituents of a system (typically
implemented as third-party components). Coordinators, on
the other hand, simply route messages and each input they
receive is strictly followed by a corresponding output. We
make this distinction in order to clearly separate compo-
nents that are responsible for the functional behavior of a
system and components that are introduced to aid the inte-
gration/communication behavior.

Within this architectural style, we will refer to (i) a sys-
tem as a Coordinator-Free Architecture (CFA) if it is de-
fined without any coordinators. Conversely, (ii) a sys-
tem in which centralized coordinators appear is termed
Coordinator-Based Architecture (CBA) and is defined as a
set of functional components directly connected to one or
more centralized coordinators, through connectors, in a syn-
chronous way. Moreover, (iii) a system in which distributed
coordinators appear as sets of filters (one filter for each com-
ponent) is termed Distributed-Coordinator-Based Architec-
ture (DCBA) and is defined as a set of functional compo-
nents each of them directly connected to its local filter; each
filter is comnected to the other filters, through synchronous
connectors, in a peer-to-peer fashion. Our architectural
style belongs to generic layered styles. In [5] it is showed
that, under suitable assumptions, it is possible to decom-
pose a n-layered CBA system in n single-layered CBA sub-
systems. Thus, in the reminder of this paper, we will only
deal with single layered systems. To deal with multi-layered
systems we apply the formalized approach for each single
layered subsystem.

Figure 1.a) illustrates a CFA, Figure 1.b) its correspond-
ing CBA and Figure 1.¢) its corresponding DCBA. C1, C2,
C3 and C4 are functional components. K is a centralized
adaptor. f1, f2, f3 and f4 are the local filters. The com-
munication channels denoted as lines between components

Figure 1: A sample of a CFA, the corresponding
CBA and the corresponding DCBA

are connectors (e.g., ORB for CORBA, RPC for COM+ and
RMI for EJB).

3. METHOD DESCRIPTION

Our approach aims at solving the following problem: given
(i) a CFA system T for a set of black-box interacting com-
ponents and (ii) a specification P of the desired behaviors,
automatically derive the corresponding deadlock-free DCBA
system V' which exhibits only the desired behaviors in P.

DCBA

CFA

CBA
Step 2: adaptor*

distribution e
G

Step 1: adaptor
synthesis

|:| automatically synthesized assembly code

|:| third-party black-box components

Figure 2: Method’s steps

Our approach assumes that a specification of the system
to be assembled is provided in terms of bMSCs (i.e.: ba-
sic Message Sequence Charts) and HMSCs (i.e.: High-level
MSCs) specification. From the MSCs specification of the
system, we can derive the Labeled Transitions Systems LTSs
specification of each component. This is done by applying
a suitable adaptation of the translation algorithm presented
in [9]. We also assume that a specification P of the de-
sired behaviors to be enforced exists in terms of Biichi au-
tomata® [1]. With these assumptions we are able to derive
the DCBA system V which is obtained by automatically de-
riving the local filters that serve as distributed glue code for
the components forming the CFA system 7. These commu-
nicating filters mediate the interactions among components
by allowing only the execution of the deadlock-free behaviors
and the ones in P.

In the following, we discuss our method proceeding in two
steps as illustrated in Figure 2.

(1) By tacking into account the specification of the com-
ponents in T and following the CBA style constraints, the
first step builds a deadlock-free centralized adaptor that ex-
hibits only the behaviors in P (i.e., K in Figure 2). This is
done by exploiting the coordinator synthesis algorithm we
described in [5]. For the purposes of this work, we do not
provide the reader with a detailed description of the phases
involved in this step but entirely refer to [5] for them.

! A Biichi automata is an operational description of a desired
behavior. It represents all the system behaviors that respect
the logic of the specified desired behaviors.

407

In [5], by using a suitable notion of behavioral equivalence,
we prove that the behavior of the CBA system is equivalent
to the behavior of T" without deadlocking interactions and
the ones that do not belong to P.

(2) The second step exploits the basic idea of the approach
to the definition of IDS filters [6]. This step distributes the
adaptor K in the CBA to obtain the corresponding DCBA
system V. K can be distributed by combining its LTS de-
scription with structural information obtained from the ac-
tual architectural configuration (i.e., CBA). This combina-
tion generates a set of local filters that are assigned one for
each component. After the generation process each local
filter is implemented as a wrapper that envelops the compo-
nent it supervises. Therefore, a local filter can observe the
messages (sent and received) of the component it resides on.
Obviously, considering only the sequences of messages of
the enveloped component is not sufficient to locally enforce
the behaviors expressed by the LTS description of the adap-
tor. Therefore, a filter has to observe enriched sequences
of messages that also contain context information provided
by other filters. Correspondingly, a filter may provide other
filters with the needed context information. Such informa-
tion exchanged among filters is called dependency informa-
tion [6]. These dependencies can be seen as synchronization
messages exchanged among filters. Thus, a filter captures
both the sequences of messages of the enveloped component
and the dependencies information. It uses the dependency
information to impose an ordering among the messages that
are sent /received by the enveloped component.

We can prove that the behavior of V' is equivalent to the
one of the CBA system through CB-equivalence. This is
done analogously to what we have done in [6] to prove that
the behavior of a set of interacting IDS filters is equivalent
to the specified one.

In the following section, by means of an industrial case
study, we show an application of our approach. This is done
by briefly sketching the first step and by focusing on the
second one since it represents the main contribution of this
paper with respect to our previous work [7].

3.1 Our approach at work

We start by taking into account the bMSC and HMSC
specification of the components forming the CFA and their
IDL (Interface Definition Language) files.

From the bMSC and HMSC specification, our tool auto-
matically derives the LTSs for each component forming the
CFA.

Each LTS is a 4-tuple (Q, qo,I,d) where Q is the set of
nodes (each node denotes a state of the execution), go € Q@
denotes the initial state (i.e., the state labeled with S0), I
is the set of arc labels (each arc label denotes an I/O mes-
sage), and 0 is the transition function (i.e., § € (Q X I X Q)
where ¢1 = d(g, a) is the state reachable from the state g by
performing the message «). For the sake of presentation, we
will hereafter refer to a transition from ¢ to ¢1 labeled with
a as “q1 = 0(g,a)”. The context allows to distinguish when
we are talking of a state or a transition. Moreover, multi-
ple transitions from the same source to the same target are
indicated by using one directed arc (i.e., an arrow from the
source to the target) with multiple labels that are separated
by “;’7 .

Within the LTS of a component, a message ?7m (Im) de-
notes an input (output) message labeled with m. By per-

forming the Step 1 of our approach, from the component
LTSs, our tool automatically derives the adaptor LTS. In
this LTS, a message ?m_j (!m_j) denotes an input (output)
message labeled with m and received (sent) from (to) Cj.

For our purposes, let 3 be an 1/O message in a LTS, we
define G as the complement of 3 in such a way that if 3 =7«
(8 =la) then 3 =la (B =a).

The LTS of the adaptor might contain filled nodes, which
denote deadlocks. Deadlocks might occur, e.g., because of
a race conditions among two components. Concluding the
execution of the Step 1, our tool simply prunes the paths
(of the coordinator LTS) which contain deadlocks in order
to obtain the LTS of the deadlock-free adaptor K.

The Step 2 distributes K in the set of filters (one for
each component). As it is already said in Section 3, each
filter implements a wrapper that envelops the component
it resides on. The filters (by interacting with each other
one) capture all messages sent/received by their enveloped
components and delegate them by imposing an order that
enforces the behavior expressed by K.

The basic idea for the filters generation can be summa-
rized in two phases: local filters generation and dependencies
generation.

Local filters generation

This phase considers the LTS of the centralized adap-
tor K = (Q,qo,I,d) and the LTS of a component C; =
(Q%,qé,1',6%). The output is a preliminary version of the
LTS f; = (in,q{;"7 I7i §74) of the filter assigned to the com-
ponent C;.

The preliminary LTS of f; is obtained by considering each
transition q1 = (g, m_j) defined in K. In the case of m_j
is a message that can be performed by C; (i.e., m € I;
and j = i) such transition is reflected in a f;-transition g1
6%i(q, m_j), the states ¢, ¢1 are added to Q”* and the message
m_j is added to I¥i. In other words, looking at K, the
sequences of interaction that happen locally on a component
C; are projected on the preliminary LTS of the local filter
Ji-

We recall that the preliminary version of a local filter is
not sufficient to realize the correct enforcement. Our solu-
tion is to allow a filter to accept/provide context informa-
tion by the other filters. We call such information exchanged
among filters dependency information.

Let fi be the LTS of the filter of the component Cj;.
Dependency information is of the form !f(m,{C;}) or
?f(m/,{Cx}) where C; and Cx range on the name of the
application components. The message !f(m, {C;}), outgo-
ing dependency, is sent by f; to filter f; in order to commu-
nicate that C; has performed the message m. The message
?2f(m/,{Ck}), incoming dependency, is an incoming infor-
mation sent by filter fr. With this information fr commu-
nicates to f; that Cj has performed the message m/'.

A dependency information allows a filter to synchro-
nize and cooperate with each other to enable the delega-
tion/acceptance of a message with respect to the order im-
posed by K.

The dependencies are placed by the dependencies genera-
tion phase that is performed locally to each component C;.

Dependencies generation

The basic entities to place dependencies are synchronization
and enabling states.

408

Let K = (Q, qo, I, §) be the LTS of the centralized adaptor
and let f; (in7qgi,lfi,5fi) be the preliminary LTS of
the local filter f; assigned to the component C;. A state
q € Qi is a synchronization state of f; if: (1) Im_ € I
and 36%i (¢, m_i) where m_i is a message performed by the
component Cj; (2) Im_k € I, m_k does not belong to I7
(i.e., k # i) and 3¢+ = 6(¢,m_k) and ¢+ # q.

Let ¢ be a state of K that is exited by different transi-
tions projected in different filters. In this case the filters
have to synchronize so that exactly one of those transitions
will be performed. To simplify matters, let us consider the
case in which from ¢ two transitions exit: ¢1 = (g, m-1)
and q2 = §(q,m_2) (m_1 and m_2 are messages performed
by C1 and Cs, respectively) and ¢ # ¢1 # ¢2. From the fi
point of view ¢ is a synchronization state since it is exited by
a transition labeled with both a message (i.e., m_-1) whose
complement message (i.e., m_1) is performed by the compo-
nent it envelops (i.e., C1) and a message (i.e., m_2) whose
complement message (i.e., m_2) is performed by a compo-
nent that is enveloped by a different filter (i.e., C2 enveloped
by f2). In this case the dependencies generation phase
adds to fi the transitions gz = 671 (q,?f(m_2,{C2})) and
q1 = 671 (q,' f(m1,{C1})). The former is performed when
f2 communicates to fi that Cs2 has performed the message
m_2 and, in so doing, from the state q the global execution
reaches the state g2. The latter when fi communicates to
f2 that C; has performed the message m_1 and, in so doing,
from the state ¢ the global execution reaches the state gi.
Symmetrically, from the f2 point of view ¢ is a synchroniza-
tion state and the dependencies q1 = §/2(q, ?f(m_1,{C1}))
and g2 = 62(q,!f(m_2,{Cs})) are added to f. From the
point of view of K if it is in the state ¢ then either the
transition ¢ 0(g,m-1) or g2 = (¢g,m-2) can be per-
formed. From the filters point of view the dependencies
1f(m_1,{C1}) and ! f(m_2,{C>2}) sent between fi and f> (re-
spectively) are a means to overcome the problem.

To generalize the above discussion, let K = (Q, qo, I,)
be the LTS of the centralized adaptor and let g be a state
of K, we denote by f¢ {fi :+ Im_ in such a way that
q¢ = §(q,mZi) } the set of filters where a transition of K,
exiting from ¢, has been projected.

Suppose that all filters in f¢ {f1,..-, fn} are in the
state ¢ and try to acquire the right to accept/delegates a
message performed by the component enveloped by each of
them in the same time. The ordering f1 < ... < f, among
them establishes that only the highest filter in the ordering
grants the right. In general, we denote the dependencies
sent among the filters in f? as synchronization dependen-
cies since they are used to synchronize the filters in order
to accept exactly one message.

To characterize the other type of dependencies, we intro-
duce the concept of enabling state as follows.

Let K = (@, qo, I,) be the LTS of the centralized adap-
tor and let f; (in,qgi,lfiﬁfi) be the LTS of the local
filter f; assigned to the component C;. A state ¢ € @ is an
enabling state if: (1) Im_i € I and 3671 (¢, m_i) where m_i
is a message performed by the component C;; (2) Im_k € I,
m_k does not belong to I (i.e., k # i) and 3¢~ € Q such
as ¢ =06(q”,mk) and ¢~ #gq.

An enabling state of K defines one that is entered and
exited by transitions projected on two different filters. For
instance, K can perform two subsequent transitions from a
state ¢ to a state g1 and subsequently to g2 in such a way

that ¢1 = §(q,m-1) and g2 = §(q1, m-2), where m_1 and m_2
are performed by C; and C> (respectively) and ¢ # g1. From
the K point of view this sequence of two transitions defines
a constraint among the messages m_1 and m_2 (i.e., m_1
must be acceped/delegated before m_2). However, from the
local filters point of view this constraint is lost since that
transitions’ sequence is divided onto the filters fi and fs.
The problem is solved by adding dependencies. Since ¢ is
an enabling state of K the dependencies generation phase
adds the transition ¢1 = 6/1(q,!f(m_1,{C2})) to fi and the
transition ¢1 = 672(q, 2f(m_1,{C1})) to fo. Therefore fo
can allows the global execution to reaches the state ¢1 by
means of the transition g1 = 6/2(g, ?f(m_1,{C1})). However
this transition can be performed when f; sends the outgo-
ing dependency !f(m_1,{C1}) (i.e., f1 can impose the right
ordering among the messages m_1 and m_2). We denote
such type of dependencies as enabling dependencies since
they are used (by a filter) to correctly enable the filter-local
computations.

The assignment of dependencies, on each local filter, is it-
erated until all enabling and synchronization states are cov-
ered. However, after this phase a filter (i.e., its LTS) may
still have disconnected parts (i.e., it may be constituted by
a set of disconnected sub-LTSs). We use e-transitions [3] to
link the parts of the LTS in the right ordering and to build
a whole connected LTS of the local filter. The final version
of a filter is obtained by applying usual technique to remove
e-transitions of each filter.

It is worth mention that (due to the e-transitions elimi-
nation step) the state labels of each filter LTS are automat-
ically renamed by our tool. Moreover, the tool makes use
of unique identifiers automatically generated to codify the
dependency messages.

As already discussed above, a filter uses dependencies to
enable the delegation/acceptance of a message with respect
to the order imposed by K. We remark that, only looking
at local information, we maintain deadlock-freedom as well
as all the behaviors globally specified by means of K.

The overhead of messages generated by the filters is
strictly related to the behavior defined by the LTS of the cen-
tralized adaptor. A filter adds dependency messages when
non-interacting components behavior has to be related. Let
q be a state of the adaptor. Let mims...m, be n mes-
sages, related to n different components residing on n dif-
ferent hosts Hy1Hs...H,. Suppose that each message of
mimsz ... m, labels a transition exiting from the state q.
In the worst case when a filter on the host H; moves from
a state ¢ to a state ¢/, with ¢ # ¢/, then at most n de-
pendencies can flow on the distributed system. In practice
dependency synchronization messages are relatively small in
size and, depending on the system architecture, it is possible
to bound the number of the messages exiting from a state ¢
related to different components/hosts.

Actual code derivation

The LTS of a local filter constitutes the basis formal spec-
ification to build our distributed adaptor equivalent to the
centralized one, which is modeled by the LTS of K. Each
filter is implemented as a component wrapper whose imple-
mentation logic reflects the structure of the state machine
represented by the filter LTS. This wrapper is interposed
between the environment and the component whose behav-
ior has to be enforced as dictated by the structure of the

409

filter LTS. It contains a message buffer used to store compo-
nent messages and dependencies. To delegate a component
message, the wrapper has to (i) send the synchronization
dependencies in order to acquire the right of delegating that
message; (ii) if it grants this right then it has to send the
enabling dependencies to correctly preserve the behavior of
the centralized adaptor K.

4. CONCLUSION AND FUTURE WORK

In this paper we have presented an approach to auto-
matically assemble component-based systems by synthesiz-
ing distributed adaptors. Our approach suitably combines
two different methods we have previously developed. One
method, implemented in the SYNTHESIS tool [7] allows
one to automatically synthesize centralized adaptors for
component-based systems. The second one, implemented
in the DESERT [6] tool, allows one to generate a set of IDS
filters that look at local information in order to validate
globally defined security policies.

The two methods take advantage of each other. The latter
allows the derivation of a distributed implementation of the
centralized adaptor and, hence, it enhances scalability, fault-
tolerance, efficiency and deployment. On the other hand, the
former allows (i) a higher level of abstraction in specifying
the globally defined behaviors by simplifying the non-trivial
user’s task of specifying them and (ii) detection of deadlocks.
In [4], we successfully validated the approach on a real-scale
case study in the domain of industrial applications (PREXIS
S.r.L. company - ITALY - hitp://www.prezis.it).

Currently SYNTHESIS derives the actual COM/DCOM
code implementing a centralized adaptor. However, the ap-
proach might still suffer of the well known state-explosion
problem since we automatically derive the distributed adap-
tors by constructing a behavioral model of a centralized
one. Synthesizing that model has an exponential space-
complexity. As future work we plan to automatically syn-
thesize the implementation of the distributed adaptors by
using a compositional and on-the-fly technique which may
avoid to produce the model of the centralized adaptor.

5. REFERENCES

[1] J. Buchi. On a decision method in restricted second order
arithmetic. In International Congress on Logic, Method and
Philosophical Sciences, 1960.

I. Crnkovic and M. Larsson. Building reliable component-based
Software Systems. Artech House, Boston, London, 2002.

J. E. Hopcroft and J. D. Ullman. Introduction to automata
theory, languages, and computation. Addison-wesley
publishing company, 1979.

P. Inverardi, L. Mostarda, M. Tivoli, and M. Autili. Synthesis
of correct and distributed adaptors for component-based
systems: an automatic approach. Technical report, Dep. of
Computer Science, University of L’Aquila -
http://www.di.univaq.it/tivoli/trcs_07.pdf, 2005.

P. Inverardi and M. Tivoli. Software Architecture for Correct
Components Assembly. Springer, LNCS 2804.

L. Mostarda and P. Inverardi. A distributed intrusion detection
approach for secure software architecture. 2th European
Workshop on Software Architecture. To appear. 2005.
M.Tivoli and M.Autili. Synthesis: a tool for synthesizing
“correct” and protocol-enhanced adaptors. to appear on
L’Object Journal,
http://www.di.univaq.it/tivoli/LastSynthesis.pdf, 2005.

C. Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley, 2004.

S. Uchitel, J. Kramer, and J. Magee. Detecting implied
scenarios in message sequence chart specifications. In ACM
Proceedings of the joint 8th ESEC and 9th FSE, Vienna, Sep
2001.

(2]
(3]

4

[5

6

(7]

8l

[9

