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Abstract—Wireless Sensor Networks have seen a tremendous
growth in various application areas including health care, envi-
ronmental monitoring, security, and military purposes despite
prominent performance and availability challenges. In such
applications, clustering plays an important role in enhancement of
the life span and scalability of the network. Although researchers
continue to address these challenges, the type of distributions for
arrivals at the cluster head and intermediary routing nodes is
still an interesting area of investigation. The general practice
in published works is to compare an empirical exponential
arrival distribution of wireless sensor networks with a theoretical
exponential distribution in a Q-Q plot diagram. In this paper,
we show that such comparisons based on simple eye checks
are not sufficient since, in many cases, such plots may lead to
incorrect conclusions. After estimating the Maximum Likelihood
parameters of empirical distributions, we generate theoretical
distributions based on the estimated parameters. By conducting
Kolmogorov-Smirnov Test Statistics for each generated inter-
arrival time distributions, we find out, if it is possible to represent
the traffic into the cluster head by using theoretical distribution.
Statistical analysis concluded that the general assumption of
Empirical exponential arrival distribution in wireless sensor
networks holds only for a few cases. There are both theoretically
known such as Gamma, Log-normal and Mixed Log-Normal
of arrival distributions and theoretically unknown such as non-
Exponential and Mixed cases of arrival in wireless sensor net-
works. The work is further extended to understand the effect
of delay on inter-arrival time distributions based on the type of
medium access control used in wireless sensor networks.

I. INTRODUCTION

Sensor networks offer a powerful combination of
distributed sensing, computing and communication. Self-
configuring Wireless Sensor Networks (WSNs) can be invalu-
able in many civil and military applications for collecting,
processing, and disseminating wide ranges of complex envi-
ronmental data, hence they have attracted considerable research
attention in the last few year. Recent work [1] illustrated
tools and methodologies for the modelling, simulation and
script generations for simulation tools for various WSN ap-
plications and performance evaluation by employing physical
environment as well. Depending on the area of application,
information monitoring and reporting may further be classified
as continuous, periodic, or event-based (driven) [2], [3]. In
all these cases, data arrival delay is clearly determined by
the nature of application and the chosen monitoring scheme.
Quality of Service (QoS) provision in relation to the end
to end delay of transmitted packets remains a serious con-
cern along with the commonly accepted challenges such as

energy consumption, network connectivity, data aggregation,
computation power [4]. Characterization of the end-to-end
delay distribution is fundamental for real-time communication
applications with probabilistic QoS guarantees. The general
practice in published works is thus to compare empirical
exponential arrival distributions of wireless sensor networks
with theoretical exponential distributions in QQ plot diagrams
[5]. In [3], cross layer analysis of the end to end delay
distribution in WSNs was studied and the results show that
inter-arrival time mostly follow exponential distribution except
for low periodic traffic. There are many studies which consider
exponential arrivals to sensor nodes [5]–[9]. However, in other
quarters there has been mixed opinions on the appropriate dis-
tribution for modelling inter arrival delay of WSN data packets
[3], [10], [11]. In other works, there has been mixed opinions
on the appropriate distribution for modelling inter-arrival time
of WSN data packets [10]. This strongly indicates the the need
for a study to identify acceptable types of distributions for
inter-arrival times used in modelling WSNs. In this paper, an
investigation is carried out to establish the most appropriate
distribution for the inter-arrival times at Cluster Heads (CH)
and relay nodes. The process is started by identifying and
characterizing various applications and determining suitable
data delivery models depending on application requirements.
Simulation results are presented and analysed in detail to
characterize end to end delay between arriving data packets.
Regardless of the medium access scheme employed, energy
efficiency is of utmost importance in WSNs. A MAC protocol
must certainly support the operation of power saving modes
for the sensor node. The main motivation must to minimize the
medium access delay that may occur due to high traffic rate. In
this paper, the average end-to-end delay for various application
rates is also presented, whilst various MAC protocols are
considered to save energy.

II. LITERATURE SURVEY

Performance modelling and analysis continues to be of
great importance in supporting research as well as in the
design, development and optimization of WSN and their appli-
cations. The current trend towards the use of WSNs for sensing
and control now has the potential for significant advances, not
only in science and engineering, but also, on a broad range of
applications. This brings the need for performance modelling
for the optimization of deployment of WSNs. However, the
special design, characteristics of sensors and their applications
separate them from the traditional networks. These charac-
teristics pose great challenges for the architecture, protocol



design, performance modelling and their implementation. It is
essential to consider energy efficiency of WSNs because of
their limited energy sources (most of the times batteries). In
order to minimise the energy consumption, one of the effective
techniques is to place sensors in sleep mode during the idle
period [12]. In [13]–[15], a wake-up scheduling scheme at the
MAC layer is proposed, which wakes up the sleeping nodes
when there is a need to transmit or receive, thus avoiding
a degradation in network connectivity or quality of service
provisioning.

Characterising delay in distributed systems has been con-
sidered in various contexts. However, it can be observed
that accurately characterizing end-to-end delay at the CH
is still an open problem. Considerable amount of research
on sensor networks reported recently has been ranging from
network capacity and signal processing techniques, to topology
management, algorithms for traffic routing and channel access
control. The model presented in [10] is used to investigate
system performance in terms of energy consumption, network
capacity, delay in data delivery along with the trade-off’s
that exist between performance metrics and sensor dynamics
in active/sleep modes. A Markov model is presented for
WSNs, where the nodes may enter into sleep mode. Through
standard Markovian techniques, a system model representing
the behaviour of a single sensor has been constructed along
with the dynamics of the entire network, and the channel
contention among interfering sensors. The proposed solution
of the system model is then obtained by means of a Fixed
Point Approximation (FPA) procedure, and the model has been
validated via simulation.

Due to hardware constraints for energy efficiency, opti-
mizing node packet buffer and maximizing the performance
is necessary to improve the Quality of Service(QoS) for
transmission in WSNs. In [16], a packet buffer evaluation
method using queuing network models is proposed where,
the blocking probabilities and system performance indicators
of each node are calculated using an approximate iterative
algorithm. The model considered focuses on a single server
model in WSNs and the method used to calculate packet buffer
capacity for nodes also indicate that the sink node requires
higher performance, when compared to the other nodes in
the network. The Markov model of the sensor sleep/active
dynamics is presented in [17], that predicts the sensor energy
consumption by acquiring this information for each sensor,
while a central controller constructs the network energy map
representing the energy reserves available in various parts of
the system. Only a single node is represented by a Markov
chain, while the network energy status is derived with the help
of simulation studies.

With regard to analytical studies, results on the capacity
of large stationary ad-hoc networks are presented in [18]. Two
network scenarios were considered; one including arbitrarily
located nodes and traffic patterns, while the other one with
randomly located nodes and traffic patterns. An analytical
approach on network coverage and connectivity of sensor grids
is presented in [19]. The sensors are considered unreliable and
fail with a certain probability leading to random grid networks.
Results on coverage and connectivity are derived as functions
of key parameters such as the number of nodes and their
transmission radius.

Several approaches based on simulations and experiments,
have been proposed for performance evaluation of IEEE
802.15.4 networks [20]. In [21], an analytical framework based
on a Markov chain characterization of the MAC protocol is
proposed for IEEE 802.11 networks in saturation conditions.
Based on this pioneering work, several approaches have been
proposed for the characterization of the MAC performance
in IEEE 802.15.4 networks with a star topology. In this
work, a scenario with acknowledgement (ACK) messages is
considered and an evaulation of the network performance in
both saturation and non-saturation regimes is presented, while
trying to characterize the conditions under which the network
enters the saturation region [22]. A simple Markov chain
theoretical model to characterize the sensors as well as the
channel status is proposed in [23]. The models shows good
agreement with ns-2 based simulations. This model allows to
investigate throughput and energy consumption metrics within
WSNs. In [24], an extended framework of the one proposed by
[23] is presented for a 2-hop network scenario, i.e., networks
where sensors communicate with the coordinator through an
intermediate relay node, which forwards data packets from the
sources (the sensors) towards the destination (the coordinator).
Similar works have been presented in [25], [26], emphasising
the use of a relay for interconnecting two different clusters
in IEEE 802.15.4 networks and analysing the performance
through a queueing theoretical analysis. However, the proposed
scenario models the (simpler) cases where the relay does
not content the medium access to the sensors. Hence, it is
observed that accurately characterizing arrivals at the cluster
head in WSNs is still an open problem. Although it is quite
difficult to analyse each possible application in WSNs, it
is sufficient to analyse each class of application classified
by data delivery models, as most of these applications in
each class have common requirements on the network [27].
A well established simulation tool Castalia which provides
realistic node behaviour, wireless channel and radio models,
and enables to mimic and analyse the real life scenarios for
various types of applications is employed in this study.

III. SYSTEM COMMUNICATION PARADIGM

A system of Wireless Sensor Network with identical sensor
nodes deployed in a cluster tree topology is considered. The
sensor nodes used are assumed to self-configure during initial
deployment and remain stationary thereafter. All the nodes in
a cluster and adjacent CHs are considered directly connected
to the CH. The primary focus is to study the inter-arrival
distribution of packets at the CH. The total arriving data
packets at the CH at any given time is therefore equal to the
sum of all the independent arrivals from the cluster nodes and
arrivals from adjacent CHs forwarding their data to the sink.
For this case continuous monitoring of event driven systems
are considered.

In this set up all nodes are considered to be equipped
with an omnidirectional antenna and they also have a common
maximum radio range r within which they are able sense event
occurrences and also transmit information to the CH based
on the 802.15.4/Zigbee standards. The topology of interest is
shown in Figure 1. For simplicity, all sensor nodes are shown
connected directly to the CH0 in Figure 1. CH0 can forward
data to the sink either through CH1 or CH4, whereas CH2 and
CH3 forwards their packets to the sink passing through CH0.



It is also shown that nodes N1 to N8 are directly connected to
the CH0.

Figure 1: Network topology of the reference scenario

Each sensor node is able to independently monitor its
habitat and organise the information sensed into fixed data
units storable at the sensor buffer before finally forwarding to
the CH. The buffers, both at the sensor nodes and at the CH are
assumed to have infinite capacity and are follows First in First
out (FIFO) queuing discipline. The Cluster Head is only able to
receive or transmit at one go within the assigned time slots of
unit duration. Once Information sensed and aggregated at the
nodes are forwarded to the CH, it finalizes cluster aggregation
and transmits all the information to the sink either directly or
through other intermediary CHs. It is assumed that at least one
path always exists towards the sink [10].

In this study continuous monitoring applications where the
nodes periodically (deterministic) sense and transmit infor-
mation are considered for various MAC protocols, in order
to see the effects of MAC protocols on the distribution of
arrival process for the CHs. Castalia simulation environment
is employed in order to analyse the inter-arrival distribution at
the CH. For each experiment, packet arrival rate and number
of nodes is set at desired values. Desired MAC properties;
TMAC, CSMA, and no MAC are then considered for each
experiment. The generated inter-arrival distribution time results
are then further analysed using statistical tools to identify the
actual distribution pattern.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In table V below, we report the results of finding theoretical
distributions to the empirical arrival distributions of simulated
data series at the CH and the intermediary routing nodes.
The first column presents the number of observations in
the simulated series. The second column displays estimated

Maximum Likelihood parameters of empirical distributions 1.

The well-known theoretical distributions corresponding
properly to the empirical distributions of the simulated data
series are Exponential, Gamma, Log-Normal and Mixed Log-
Normal distributions. Columns three and four report the K-
S Test Statistics and their P -Values. Although we display
Q-Q plots to compare empirical distribution to theoretical
distributions whether these two population distributions are
exactly the same, we also conduct a statistical test to prove it.
Checking by eye, the quantiles for the first distribution versus
the quantiles for the second distribution will fall on the 0 – 1
line of the Q-Q plots can be insufficient. It can be both difficult
and subjective to decide how differences between distributions
will yield various kinds of deviations from a straight line.
Appendix B presents details about the probability plots or Q-Q
plots.

K-S Test Statistics belong to the goodness of fit tests
which indicate whether or not it is reasonable to assume that
a random sample comes from a specific distribution. It is
used to decide if a sample comes from a population with
a specific distribution. It can be applied both for discrete
(count) data and continuous binned and both for continuous
variables. It is based on a comparison between the empirical
distribution function (ECDF) and the theoretical one that is
the upper extreme among absolute value differences between
ECDF and the theoretical CDF. The hypothesis regarding the
distributional form is rejected if the K-S Test Statistic, KSTS,
is greater than the critical value obtained from a table, or,
which is the same, if the P -value is lower than the significance
level.

For example in Table I for 10 nodes and employing CSMA
as the MAC protocol, the K-S Test Statistic, KSTS = 0.04,
P -value = 0.45 alternative hypothesis is two sided. Also, wta
represents the waiting time of arrivals, while wtf represents
waiting time of first part of arrivals and wts represent waiting
time of the second part of arrivals. These values are obtained as
means of KSTS values and P -values of 141 runs starting from
the Lower Confidence Level(LCL) value of the estimated rate
parameter of Exponential distribution to the Upper Confidence
Values(UCL). It means that we cannot reject null hypothesis
that the data follow an Exponential distribution because the
P -value is enough higher than significance levels usually
referred in statistical literature. Tables2 II and III present
detailed statistical analysis used for estimating the arrival
time distributions. Since the wireless channel is essentially
a broadcast medium, only a single transmission is allowed
in a transmission area by the MAC protocol. As a result,
simultaneous transfers are not possible. Moreover, the MAC

1When the joint density for a set of variables is viewed as a function of
the parameters alone, that function is called a Likelihood function. Hence the
Likelihood function, L(θ), is defined as L(θ) = fθ(x). Here log fθ(x) is a
scalar function of a k-dimensional variable θ and x = (x1, x2, . . . , xn). A
value of the parameter θ that maximizes L(θ) is called a maximum likelihood
estimator (MLE), and is denoted by θML. It is often easier to maximize the
log-likelihood function, logL(θ), and since the (natural) logarithmic function
is monotonically increasing in θ, the same value of θML maximizes both
L(θ) and logL(θ). Under quite general conditions, MLEs have a number of
favourable properties. Consistency: Under mild conditions, MLEs converge to
the true parameter value as the sample size increases. Asymptotic Normality:
As the sample size increases, the distribution of the MLE approaches that of
a (potentially) Multivariate Normal variables.

2Please note that only few tables and corresponding figures are presented.



Table I: Distribution of Inter-Arrival times, for 10 nodes with CSMA, sending 1 packet/10 minutes; corresponding Figures 2, 3, 4, 5

Number of
observation in the
simulated series

ML Estimates of
the parameters of

empirical
distribution

Kolmogorov-
Smirnov Test

statistics
P-values

Corresponding
theoretical

distribution for the
empirical one

All:255
Used:255

Exponential Rate =
20.86

LCL = 18.38
UCL = 23.50

Average of 141
runs :0.04

Average of 141
runs :0.45 Exponential
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Figure 2: Histogram of inter-arrival
times
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Figure 3: QQ-plot for Exponential Dis-
tribution
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Figure 4: Empirical and Theoretical Ex-
ponential PDF
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Figure 5: Empirical and Theoretical Ex-
ponential CDF

Table II: Distribution of Inter-Arrival times, 20 nodes without MAC, sending 1 packet every 5 minutes; corresponding Figures 6, 7, 8, 9

Number of
observation in the
simulated series

ML Estimates of
the parameters of

empirical
distribution

Kolmogorov-
Smirnov Test

statistics
P-values

Corresponding
theoretical

distribution for the
empirical one

All:443
Used:411

Gamma
shape = 1.49

scale = 0.03

Average of 100
runs :0.08

Average of 100
runs :0.24 Gamma
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Figure 6: Histogram of inter-arrival
times
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Figure 7: QQ-plot for Gamma Distribu-
tion
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Figure 8: Empirical and Theoretical
Gamma PDF
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Figure 9: Empirical and Theoretical
Gamma CDF

Table III: Distribution of Inter-Arrival times for 35 nodes, with TMAC, sending 1 packet every 5 minutes; corresponding Figures 10, 11, 12,
13, 14, 15, 16

Number of
observation in the
simulated series

ML Estimates of
the parameters of

empirical
distribution

Kolmogorov-
Smirnov Test

statistics
P-values

Corresponding
theoretical

distribution for the
empirical one

All:990
Used:958

First part: 914
Second part: 44

Mixed Log-Normal
Meanlog1 = -5.23

Sdlog1 = 0.23
Meanlog2 = -0.62

Sdlog2 = 0.09
Mixing proportion:

0.05

Average of 100
runs :0.19

Average of 100
runs : 3.18∗ e−14

An unknown
Mixed distribution

Table IV: Average end-to-end delay for various application rates and MAC protocols applied

1 packet every 5 min 1 packet every 5 sec 5 packet every sec

Nodes No MAC TMAC CSMA No MAC TMAC CSMA No MAC TMAC CSMA

10 0.03685413 0.03812471 0.03710934 0.036910934 0.0401187 0.039160543 0.040109 0.05791289 0.050281007

20 0.043585577 0.046399014 0.044012909 0.043902188 0.04895094 0.0462243 0.048610932 0.068023776 0.060010211

35 0.053775437 0.057112543 0.05489443 0.0539886 0.0600218 0.058330089 0.059124145 0.081778643 0.070666612

40 0.060177122 0.066062393 0.06276331 0.060289387 0.069779437 0.065319035 0.068324234 0.090668109 0.081224243
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Figure 10: Histogram of Inter ar-
rival times
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Figure 13: Histogram of log-
normal distribution
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Normal Distribution
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Figure 15: Empirical and Theoret-
ical Mixed Log-Normal Densities
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Figure 16: Empirical and Theoret-
ical Mixed Log-Normal CDF

Table V: Summary for Inter arrival time distributions for various application categories

S.No Application Type Packet Rate (1packet/time)
Inter arrival time distribution

No MAC TMAC CSMA

1 Environment monitoring, Smart
agriculture [28], [29] 5 - 10 min Exponential for 10-15 nodes Mixed-Log normal for 10-15 nodes Exponential for 10-15 nodes

2 Traffic monitoring, Vehicle
tracking [30], [31] 5 - 10 sec Gamma for 20-30 nodes Unknown Mixed distribution Unknown mixed distribution

3 Military applications, BANs [32],
[33] 1 sec or higher Constant Unknown mixed distribution Unknown non-Exponential

layer introduces a non-deterministic delay for channel access
because of the activities of other nodes. If a neighbor of a
node is transmitting a packet, the MAC protocol delays the
transmission for a random amount of time to prevent collisions
with the ongoing transmission as well as other neighbours
that are trying to access the channel. This may significantly
impact the performance of the network. The delay incurred
due to various MAC protocols for different application rates
is presented in Table IV.

V. CONCLUSION

To the best of our knowledge, this is the first work that
provides statistical proof for finding theoretical distributions of
arrivals at the CH and relay nodes in WSNs. A clustered model
is considered characterised by its sending rate, inter-arrival
distribution and the service process. The empirical distributions
of inter-arrival times of the packets considering such physical
events that do not occur frequently are generally assumed by
Poisson processes, and the inter-arrival times by exponential
distributions. The general practice in published works is thus to
compare empirical exponential arrival distributions of wireless
sensor networks with theoretical exponential distributions in Q-
Q plot diagrams. In this paper, we show that such comparisons
based on simple eye checks are not sufficient since in many
cases incorrect conclusions may be drawn from such plots.
After estimating Maximum Likelihood parameters of empirical
distributions, we generate theoretical distributions based on
the estimated parameters. By conducting Kolmogorov-Smirnov
Test Statistics for each generated data series, we find out, if
it is possible, a corresponding theoretical distribution. Em-
pirical exponential arrival distribution assumption of wireless
sensor networks holds only for a few cases. There are both
theoretically known such as Gamma, Log-normal and Mixed

Log-Normal of arrival distributions and theoretically unknown
such as non-Exponential and Mixed arrival distributions in
wireless sensor networks. The effects caused by MAC prop-
erties are also analysed by experimenting with well known
MAC protocols and the summary of the inter arrival time
distributions after extensive tests are presented for various
application categories in V. Therefore, these results confirm
that the assumption of exponential inter-arrival distributions
does not hold in all the cases. Exponential arrival distribution
assumption of wireless sensor networks holds only when a
fewer nodes (10-15), sending packet every 5-10 minutes with
no MAC properties, as-well as when CSMA properties are
considered.
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