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Abstract Much attention has been paid in recent years to the use of smart contracts.
A smart contract is a transaction protocol that executes the terms of an agreement.
Ethereum is a widely used platform for executing smart contracts, defined by using a
Turing-complete language. Various studies have been performed in order to analyse
smart contract data from different perspectives. In our study we gather a wide range
of verified smart contracts written by using the Solidity language and we analyse
their code. A similar study is carried out on Solidity compilers. The aim of our
investigation is the identification of the smart contract functionalities, i.e. opcodes,
that play a crucial role in practice, and single out those functionalities that are not
practically relevant.

1 INTRODUCTION

In recent years, increasing attention has been drawn towards the use of smart contracts
for various application areas, such as public registries, registry of deeds, or virtual
organisations. Smart contracts are a digitalised version of traditional contracts which
should enhance security and reduce the transaction costs that are related to contracting.
One of the most prominent platform for smart contract definition and execution is
Ethereum' [14]. This is a blockchain-based distributed computing platform that
allows to create smart contracts by using a Turing-complete language.

Various studies have been carried out to analyse smart contracts data from different
angles. [1] analyses smart contracts in order to detect zombie contracts, while [3]
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inspects the usage of contracts with respect to their application domain. Finally
[8, 10] study the contracts from technical, economic, and legal perspectives.

In this paper we present a study that gathers ten of thousands of verified Ethereum
smart contracts that has been written by using the Solidity language?. A contract is
verified when a proof that it can be obtained by compiling a (Solidity usually) source
code can be provided. Our study analyses the hexadecimal bytecode instructions of
smart contracts, by referring to their equivalent human readable format called opcode.
We have analysed the opcodes frequency distribution for the considered contracts
and for various compilers, in different period of times. We have discussed in details
why some opcodes are more frequent than others, while some others are not used at
all.

Our study permits to gain a precise understanding on how the linguistic constructs
supported by Ethereum have been used in practice by contract programmers in the last
two years. The results of our analysis can enable some simple, yet effective, checks
on contracts concerning anomalous usage of opcodes (e.g., presence of opcodes
never used in the practice). In addition, our study permits to identify a set of core
features laying the groundwork for defining, as a long term goal, new formalisms
and domain specific languages (DSLs) supporting the development of applications
based on smart contracts. On the one hand, formalisms pave the way for the use of
formal techniques for verification. On the other hand, frequently used opcodes can
be linked to a set of widely used programming patterns related to specific domains
of application. Such information can be exploited to devise different DSLs to more
conveniently define smart contracts for specific application contexts.

The rest of the article is organised as follows. Section 2 outlines the basic concepts
of Ethereum; Section 3 overviews the experimental setup that has been used to gather
smart contract data and discusses the result of our analysis; Section 4 reviews the
related work; finally, Section 5 concludes the paper and outlines future work.

2 Ethereum Background

The blockchain implements a ledger which records transactions between two parties
in a verifiable and permanent way. The blockchain is shared and synchronised across
various nodes (sometimes referred to as miners) that cooperate in order to add new
transactions via a consensus protocol [12]. This allows transactions to have public
witnesses thus making some attacks (such as modification) more difficult. In this
paper we focus on Ethereum [14] which is a blockchain-based distributed computing
platform that allows the definition of smart contract, i.e., scripting functionality.
One of the main feature of Ethereum is its Turing-complete scripting language,
which allows the definition of smart contracts. These are small applications that are
executed on the top of the whole blockchain network. The code of an Ethereum
contract is written in a low-level, stack-based bytecode language, i.e., the Ethereum

2 https://github.com/ethereum/solidity
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Virtual Machine (EVM) code. The instructions of the hexadecimal bytecode rep-
resentation are often mapped into a human readable form which is referred to as
opcode. An exhaustive list of EVM bytecodes and opcodes can be found in the
Ethereum Yellow Paper [14]. High-level programming languages are available to
write smart contracts, whose code is compiled into EVM bytecode in order to be exe-
cuted in the blockchain. Currently, the most prominent language to write Ethereum
smart contracts is Solidity. Two different Solidity compilers are available: solc?
and solc-js*. The former is written in C++, while the latter in Javascript. Our study
only considers solc, which is the official and most maintained compiler for writing
smart contracts.The solc compiler was released on the 21 of August 2015 version
0.1.2 and is currently at version 0.5.1 released on the 3" of December 2018.

A smart contract is added to the blockchain as a transaction. Explorers can be
used to read code and transactions of smart contracts. An explorer is a website that
tracks all the information inside the blockchain and shows it in a human readable form.
Explorers can perform various analysis on the blockchain and allow the verification
of contracts. This is a three-step process where: i) the author publishes the compiled
code of the contract in the blockchain, then ii) she loads the original source code and
the version of the compiler into the explorer, and finally iii) the explorer marks the
contract as verified when the compiled code can be indeed obtained from the source
code. This process cannot be performed by only considering the blockchain which
does not store any source code nor compiler information.

3 ANALYSIS OF SMART CONTRACTS AND OPCODES

This section overviews the experimental setup that has been used to gather various
smart contract data and the result of its analysis.

3.1 Experimental setup

We have used Etherscan® in order to retrieve smart contracts information. Although

several explores are available (e.g., Etherchain.org®, Ethplorer’ and Blockchair®)
Etherscan is the only one that allows to obtain verified smart contracts. Our study
considers the following smart contract information:

e the Ethereum unique address of the contract;

3 https://github.com/ethereum/solidity
4 https://github.com/ethereum/solc-js
5 https://etherscan.io/ [13]

6 https://www.etherchain.org/

7 https://ethplorer.io/

8 https://blockchair.com/ethereum
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the translation of the smart contract from its bytecode form into the opcode one;
the Solidity compiler version that has been used to compile the smart contract;
all dates where at least a smart contract was verified.

We have obtained the data of all contracts that have been verified between October
2016 and May 2018 (the date at which our data collection activity ended). Very
few contracts were verified before October 2016 thus we have not considered these
contracts.

We have implemented a Java program, available online’, to scan the Etherscan
web pages of verified smart contracts. The scanning is used to retrieve the addresses
of all verified contracts. A smart contract address can be given as an input to an
Etherscan API'? that outputs the smart contract source in an opcode form. Our Java
tool analyses the contract opcodes and store in a JSON format the address of the
smart contract, the compiler version used to compile the contract and all contract
opcodes with the related frequency (i.e., the number of times the opcode appears
inside the contract).

3.2 Results

In this section we present the quantitative analysis that has been performed on the
smart contract data we have described in Section 3.1.

3.2.1 Opcode frequency of all verified contracts

Table 1 reports the number of verified contracts per month and the total number
of opcode these contracts used. Notice how the number of contracts exponentially
incfrease from 2016 to today.

The histogram of Figure 1 instead, displays on the x-axis the hexadecimal value
of all opcodes (the entire list of opcodes can be found at [14]) while on the Y-axis
the global frequency of each opcode. This is obtained by summing up the number
of times each opcode appears inside each contract. It is worth noticing that only
5 opcodes have a global frequency that is more then 5% of the sum of all global
frequencies (see Figure 2 that represents the global frequencies of Figure 1 with a
logarithm scale).

3.2.2 Frequently used opcodes

In the following we discuss why some of the opcodes are frequently used while
others do not appear very often.

9 https://github.com/GianmarcoMazzante/opcodeSurv
10 http://etherscan.io/api?module=opcode&action=getopcode
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MONTH VERIFIED | OPCODE COUNT ON
CONTRACTS|VERIFIED CONTRACTS

10/2016 53 630859

11/2016 83 809555

12/2016 72 1491497

1/2017 108 1818251

2/2017 126 1830664
3/2017 120 1958167

4/2017 198 3332301

5/2017 270 3903969
6/2017 359 5436532
7/2017 702 10495739
8/2017 947 13541032
9/2017 1108 16653251
10/2017 1473 22308628
11/2017 1977 32242058
12/2017 2002 32415653
1/2018 2716 44550116
2/2018 3749 65411651
3/2018 3804 71645646
4/2018 3926 75555729
5/2018 3941 80398664

Table 1 Contracta count and opcode occurrences per month
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Fig. 1 Histogram of opcode count on verified contracts
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Fig. 2 Histogram of opcode count on verified contracts (log scale)

Table 2 summarises the ten most frequently used opcodes. Most of these opcodes
are related to stack management operations, such as swap, push and pop, since the
Ethereum Virtual Machine has a stack architecture. The PUSH1 operation adds
1-byte value into the stack. This is the most frequent operation since it is a basic stack
management operation and every contract starts with the sequence: PUSH1 0x60
PUSH1 0x40 MSTORE. This also explains the presence of the memory storing opcode
MSTORE amongst the most used opcodes. While there are various PUSHs (Table 3
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Most used opcodes
on verified contracts
1 PUSH1
2 SWAPI1 Most used PUSH opcodes
3 PUSH2 on verified contracts
4 DUPI 1 PUSH1
5 POP 3 PUSH2
6 JUMPDEST 18 PUSH20
7 DUP2 23 PUSH4
8 ADD 41 PUSH32
9 AND
10 MSTORE Table 3 First five most used push opcodes

Table 2 The ten most used opcodes of veri-
fied contracts

shows the First five most used PUSH opcodes) that differ from the amount of bytes
they push into the stack, there is only one POP opcode that works equally on every
element of the stack. The PUSH and POP behaviour does not ensure that the number
of POP is the same as the number of all PUSH. In fact, the sum of all PUSH operations
is 19788857 while the number of POP ones is 4247835 (less than one quarter of the
previous number). This is consequence of the behaviour of various opcodes that
automatically pop and push parameters into the stack. For instance the MUL opcode
does not just insert the result of a multiplication on the top of the stack but it also
removes the two factors of the operation, performing a double pop and a single push
behind-the-scenes.
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Fig. 4 Line chart comparison of SWAP and
Fig. 3 Pie chart of JUMP,JUMPI,JUMPDEST DUP occurences
opcodes occurences

Another opcode that is widely used is the JUMPDEST one which is used to specify
the destination of the jump (JUMP) and the unconditional jump (JUMPI). These are
used to translate i) loops, ii) if statements and iii) switches from the smart contract
source code which justify the high frequency of JUMPDEST amongst the most used
opcodes (see Figure 3 for the proportion of JUMPDEST with respect to the other
jump operations). We can also find the ADD opcode in the list of most used opcodes.
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This is not only used as an algebraic operation by the developers, but also as an
internal command to manage array positions. In other words, ADD is used when
adding an incremental value to the offset of an array from the MSTORE opcode. The
opcodes PUSH20 and PUSH32 are also frequently used since contracts and accounts
are uniquely identified by a 20-byte address while transactions are identified by a
32-byte address. Differently, the frequency of SWAPs and DUPs opcodes decreases as
the number of bytes increase. Figure 4 shows the frequency of these opcodes as the
number of bytes increase from 1 to 16.

3.2.3 Less frequently used opcodes

The behaviour of less frequently used opcodes can be often simulated by using
other opcodes. For instance, the RETURNDATASIZE code has been introduced with
the Ethereum Improvement Proposal (EIP) number 211'! and can be used to get the
size of the output data of the previous external call. The RETURNDATASIZE opcode
can be simulated by using a sequence of various opcodes (see the EIP-211 proposal
for details). In the same way the RETURNDATACOPY can be simulated by using other
opcodes.

Environmental Information
opcodes on verified contracts
27 CALLVALUE
28 CALLDATALOAD
33 CALLER
Unused opcodes 50 EXTCODESIZE
on verified contracts 51 CALLDATASIZE
131| RETURNDATASIZE 56 ADDRESS
132[RETURNDATACOPY 59 CALLDATACOPY
133 DELEGATECALL 68 CODECOPY
134 INVALID 70 BALANCE
135 SELFDESTRUCT 100 GASPRICE
104 CODESIZE
Table 4 Not used opcodes on verified con- 106 ORIGIN
tracts 130 EXTCODECOPY
131 RETURNDATASIZE
132 RETURNDATACOPY

Table 5 Occurences of environmental infor-
mation opcodes on verified contracts

There are various opcodes (see Table 4) which are rarely used since they introduce
a peculiar variation of an existing opcodes. For instance the DELEGATECALL opcode
is similar to the CALL one except for the context used in the call (see [14] for details).
The INVALID opcode was introduced with the EIP-141 proposal'? and it is similar to

11 https://github.com/ethereum/EIPs/blob/master/EIPS/eip-211.md
12 https://github.com/ethereum/EIPs/blob/master/EIPS/eip-141.md
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the REVERT opcode that was introduced in the EIP-140 proposal'3. Both the opcodes
abort the code execution but INVALID drains all the remaining gas of the caller while
REVERT does not. The INVALID behaviour is never used since smart contract never
drain all the remaining gas. In the same way the SELFDESTRUCT opcode transfers all
the ether between two accounts and destroy the contract'*. This behaviour is never
used.

There are also various environmental opcodes which are used to get financial
information. For instance the BALANCE and GASPRICE opcodes are used to get the
residual balance and the gas price, respectively. Table 5 shows that some of these
opcodes are rarely used. For instance the GASPRICE opcode sets the gas price for
transactions. This setting is rarely done since the default gas price is often used by
smart contracts.

3.2.4 Opcodes and contracts count over the time

In this section we analyses the total count of opcodes of verified contracts. The
X-axis of Figure 5 has a wide range of different months while the the Y-axis shows
the following information:

e the number of contracts that have been verified
e the total count of opcodes that are contained inside verified contracts

The 10th of October 2016 corresponds to the release date of the Solidity version
0.4.2. Figure 5 confirms that the usage of smart contracts raises in popularity.
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Fig. 5 Histogram of opcode count per month

and contract count per month Fig. 6 Opcodes over contract count per

month

The X-axis of Figure 6 has a wide range of different months while the Y-axis
shows the total count of opcodes that have been used in a month divided by the
number of contracts verified in the same month. We kept the same range of chart 5 to
make the two charts comparable. Figure 6 clearly shows that contracts are increasing
in size.

13 https://github.com/ethereum/EIPs/blob/master/EIPS/eip-140.md
14 The address will remain but any interaction with it will only waste gas or ether
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Fig. 7 Histogram of verified contracts per date and line chart of Ether value over time

The trend of contract deployment over the time can be better understood by
considering Figure 7. This contains the number of verified contracts for each day
together with a line chart representing the value of the ether cryptocurrency. We can
easily see that as ether increased (it happened almost in parallel with the bitcoin) an
increasing number of users were writing Ethereum smart contracts.

3.2.5 Different versions of Solidity compilers
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Fig. 8 Double histogram of opcode count and contract deployment on different version of Solidity

Figure 8 shows different versions of Solidity compilers (from 0.1.1 to 0.4.25), hav-
ing on two different series the total number of contract and opcode calls respectively,
in order to have a comparative view. This shows that the compiler version v0.4.19 is
the most used. It also shows that the Solidity version usage follows the Ethereum
trend both in terms of platform popularity and value of the currency (depicted on
Figure 7).

Figure 9 considers the Solidity compiler version v0.4.19 and shows the number of
occurrences of each opcode in the source code of the Go implementation. It shows
that the most used are the stack management opcodes, among with memory and
storage management opcodes.
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Fig. 9 Histogram of opcode occurrences on Solidity v0.4.19 source code

4 Related Work

In the literature there is a limited amount of works on studies of Ethereum smart con-
tracts and theirs analysis and statistics, with respect to other well-known blockchains
like Bitcoin [5, 6, 7].

Some of these studies focus on security issues. Atzei, Bartoletti and Cimoli
provide a survey on attacks to Ethereum smart contracts [2]. They define a taxonomy
of common programming deadfalls that may lead to different vulnerabilities. The
work provides helpful guidelines for programmers to avoid security issues due to
blockchain peculiarities that programmers could underestimate or not be aware of.
With a similar aim, Delmolino et al. provide a step by step guide to write “safe”
smart contracts [9]. The authors asked to the students of the Cryptocurrency Lab
of the University of Maryland to write some smart contracts, and guided them to
discover all the issues they had included in their contracts. Some of the most common
mistakes included: failing to use cryptography, semantic errors when translating a
state machine into code, misaligned incentives, and Ethereum-specific mistakes such
as those related to the interaction between different contracts.

Anderson et al. provide a quantitative analysis on the Ethereum blockchain trans-
actions from August 2015 to April 2016 [1]. Their investigation focuses on smart
contracts with a particular attention to zombie contracts and contracts referenced
before creation. They performs a security analysis on that contracts to check the usage
of unprotected commands (like SUICIDE). They also inspects the contracts code to
look for similarities which could result from a contract being written by following
tutorials or from testing and variants. In the aforementioned works, correctness of
smart contracts is checked by inspecting source code for known pattern. A more for-
mal approach is proposed by Bhargavan et al. [4], who provide a framework to verify
Ethereum smart contracts by (i) compiling them into F*, to check functional correct-
ness and safety towards runtime errors, and (ii) decompiling EVM bytecode into
F* code to analyse low-level properties (e.g. bounds on the amount of gas required
to run a transaction). Even if the works described above report analyses of smart
contracts, these studies significantly differ from ours, because they focus on security
aspects while the aim of our study is to identify the smart contract functionalities, i.e.
opcodes, that play a crucial role in practice, and single out those functionalities that
are not practically relevant.
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Other works cover financial aspects of blockchains and their impact on the current
economy as well as introducing the blockchain technology in some existing appli-
cation domains. In [10], Fenu et al. aim at finding the main factors that influence
an ICO success likeliness. First, they collect 1387 ICOs published on December
31, 2017 on icobench.com. From that ICOs they gather information to assess their
quality and software development management. They also get data on the ICOs de-
velopment teams. Second, they study, at the same dates, the financial data of 450 ICO
tokens available on coinmarketcap.com, among which 355 tokens are on Ethereum
blockchain. Finally, they define success criteria for the ICOs, based on the funds
gathered and on the trend of the price of the related tokens.

Boceck and Stiller highlights various set of functions, applications, and stake-
holders which appear into smart contracts and put them into interrelated technical,
economic, and legal perspectives [8]. Examples of new applications areas are remit-
tance, crowdfunding, or money transfer. An existing application is CargoChain, a
Proof-of-Concept which shows how to reduce paperwork, such as purchase orders,
invoices, bills of lading, customs documentation, and certificates of authenticity.

The work in the literature closest to ours is the one by Bartoletti and Pompianu
in [3]. They perform an empirical analysis of Ethereum and Bitcoin smart contracts,
inspecting their usage according to their application domain and then focusing on
searching for design patterns in Ethereum contracts. Their analysis on Ethereum
contracts starts from a dataset of 811 verified smart contracts submitted to Ether-
scan.io between July 2015 and January 2017. The authors define a taxonomy of
smart contracts based on their application domain to quantify their usage on each
category and to study the correlation between patterns and domains. Our work differs
from theirs on some important aspects. In fact, they study and categorise the smart
contratcs transactions loaded in the blockchain on a certain time period. Instead, we
only concentrate on verified smart contracts, because we are interested to find trends
and patterns in their code. Our focus indeed is not on transactions, but on opcodes.

Also, In [11] Kiffer, Levin, and Mislove examine how contracts in Ethereum
are created, and how users and contracts interact with one another. They find that
contracts today are three times more likely to be created by other contracts than
they are by users, and that over 60% of contracts have never been interacted with.
Additionally they find that less than 10% of user-created contracts are unique and
that there is substantial code re-use in Ethereum.

5 Conclusion and future work

In this paper we gathered and analysed the verified Ethereum smart contracts used in
the last two years. In particular, we identified most and less used opcodes. As future
work, we plan to better investigate the correlation between opcodes usage and the
corresponding Solidity code to identify relevant patterns, and to extend our study to
non-verified contracts.
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We also plan to study and analyse the gas consumption of the contracts in order to

try to optimize smart contract compiler on this direction. Finally, as longer term goal,
we intend to exploit these studies to i) support formal analyses on smart contracts
and ii) define DSLs as on top of Solidity for specific application domains.
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