
Distributed Orchestration of Pervasive Services

Leonardo Mostarda, Srdjan Marinovic, Naranker Dulay

Department of Computing

Imperial College London

Email: {lmostard, srdjan, nd}@imperial.ac.uk

Abstract—Pervasive systems are increasingly being designed
using a service-oriented approach where services are dis-
tributed across wireless devices of varying capabilities. Service
orchestration is a simple and popular method to co-ordinate
web-based services but introduces a single point of failure and
lacks the flexibility to cope with the greater variability of
pervasive environments. Choreography in contrast advocates
explicitly modelling systems as interacting peers that conform
to rules of interaction. Choreography offers greater reliability
and flexibility but leads to systems that are much harder
to validate. In this paper we describe a novel intermediate
approach, where given a logically centralised service orchestra-
tion, we automatically generate a distributed implementation
that correctly enforces the orchestration behaviour. Our system
handles all the synchronisation and consensus issues and
ensures correctness. The system also incorporates a number
of abstractions for grouping pervasive peers and coordinating
pervasive peer-to-peer interactions.

Keywords-Pervasive systems, distributed systems, choreogra-
phy, workflows.

I. INTRODUCTION

Coordinating services for pervasive environments presents

new software engineering challenges where traditional

service-oriented approaches [1] need to be augmented or

replaced by proactive and autonomous services that co-

operate to achieve to overall goals. Sense and react systems

[2], unmanned autonomous vehicles undertaking a rescue

mission [3] are two examples of systems where services are

distributed across wireless devices of varying capabilities

operating in difficult environments but whose behaviour

must be correctly coordinated in order to achieve the overall

goals of the system.

Workflows are a well-established paradigm for organising

business processes in enterprises. They have also been

proposed for pervasive environments [4], [5], [6], [7], [8]

to build applications that discover and orchestrate pervasive

services.

Although orchestration offers a relatively easy way to

build a service-based application, its overheads and cen-

tralised execution are not well-suited to pervasive envi-

ronments, where there is a need to distribute the service

orchestration behaviour to cope with failures and handle

varying numbers of services and actors. Some of these

concerns can be addressed by choreography-based work-

flows, which advocate that programmers explicitly model

distributed systems as interacting peers that conform to

rules of interaction. Choreography potentially offers greater

scalability and reliability, but choreography-based applica-

tions [9] are harder to validate and develop as they require

programmers to implement application-dependent and often

subtle synchronisation and consensus protocols [10], [11],

[12].

In this paper we describe a novel intermediate approach

that automatically generates a distributed, scalable and fault

tolerant choreographed implementation from a logically

centralised orchestration specification. We have implemented

this approach for a small workflow language based on BPEL

[13] called CHOREO and have tailored it for some of the

requirements of pervasive services. Workflows in CHOREO

are translated into partitioned finite state machines and

executed locally at service endpoints. The CHOREO runtime

system ensures correct synchronisation and consensus. In

order to validate the approach we present a service-based

fire alarm workflow system.

Section 2 of the paper presents an overview of how the

proposed approach for workflow specification and execution,

is employed in a fire alarm case study. Section 3 details

the CHOREO workflow language and Section 4 discusses

how exception handling is specified. Section 5 discusses the

translation of a CHOREO specification into a finite state

machine. Section 6 describes finite state machines’ decen-

tralised execution and section 7 summarises the performance

of decentralised execution. Finally, section 8 compares the

presented work with existing related works in this area while

section 9 provides a conclusion and outlines future work.

II. APPROACH OVERVIEW

In this section we describe a small service-based fire alarm

application and how a choreographed implementation is au-

tomatically generated from the specification of a centralised

orchestration in CHOREO.

Our system model assumes that applications are built us-

ing components that provide and require services. Workflows

are used to define the correct orchestration of component

interactions and can proactively invoke component services

as well as intercept service interactions among components.

Service interception can be used to check that the compo-

nents are interacting correctly, or to adapt the behaviour and

structure of the system to changing context.

2010 24th IEEE International Conference on Advanced Information Networking and Applications

1550-445X/10 $26.00 © 2010 IEEE

DOI 10.1109/AINA.2010.100

166

1 workflow fireAlarm(set tempSet:Temperature, set smokeSet:

Smoke, set sprinklerSet:Sprinkler)

2 while (true)

3 flow -- do activities in parallel

4 invoke tempSet.getTemp() => temp

5 invoke smokeSet.getLevel() => smoke

6 wait notification(temp)

7 if temp > 50

8 wait notification(smoke)

9 if smoke > 30

10 invoke sprinklerSet.waterOn() => oneway

11 pick -- wait for first event

12 wait call(sprinklerSet, *, start)

13 wait timeout(1000)

14 invoke sprinklerSet.alarm() => oneway

15 else

16 invoke sprinklerSet.waterOff() => oneway

17 else

18 invoke sprinklerSet.waterOff() => oneway

Figure 1. Fire alarm workflow in CHOREO

In our fire alarm workflow (See Figure 1) we have three

components. The Temperature and Smoke components

provide the services getTemp() and getLevel() to obtain

temperature and smoke readings, respectively. The actuator

component Sprinkler provides the services waterOn()

and waterOff() to switch the sprinkler on or off. There

is also the Driver component that is bound to Sprinkler

components that provides the start() and stop() services

to open and close the water flow. The basic requirement is

that the sprinkler must provide water only when both the

temperature and smoke readings exceed a threshold.

The workflow is defined over sets of components. A set

groups component instances of the same type and provides

an abstraction to separate the workflow specification from

the knowledge of how many components are available at any

given moment in the environment. For example, in the fire

alarm system we want to obtain smoke and sensor readings

from available sensors without knowing their number in

advance.

Invoke activities implement asynchronous service calls.

For instance invoke tempSet.getTemp() => temp is

used to invoke the service getTemp() on one component

instance belonging to tempSet. temp is a notification

object where replies to the invocation will be returned. The

keyword all can be used to broadcast the invocation to all

component instances in the set.

Wait activities are used to wait for notifications of

replies and also to intercept service invocations. For in-

stance, wait notification(temp) is used to wait for

the result of the aforementioned invoke while wait

call(sprinklerSet, *, start) can be used to wait

for a sprinkler to call the start service on any component

(denoted with *). We emphasise that invoke is a best effort

activity that does not guarantee the service call is delivered.

The wait activity can be used to catch any failures that arise

from the invocation.

System configuration. CHOREO system configurations

1 configuration fireAlarmConfiguration (floor:int)

2 set t:Temperature where place == floor

3 set sm:Smoke where place == floor

4 set sp:Sprinkler where place == floor

5

6 workflow wf:fireAlarm(t, sm, sp);

Figure 2. Fire alarm configuration

Host

Host LOCALFSM

Host

GOANNAformat

workflow
translation

distribution
process

host

skeleton

backups1..N

host1..N

SM

SP

T

T Manager

Manager

LOCALFSM

Manager

LOCALFSM

Leader

Host

Host

Host

Smoke(Sm)
 int getLevel()

workflow

Sprinkler(Sp)
void waterOff()
void waterOn()
void start()
void stop()

Temperature(T)
 int getTemp()

Temperature(T)
 int getTemp()

D

Driver(D)

void start()
void stop()

provided

required

GOANNA
COMPILER

Figure 3. Compilation and distribution

specify both workflows and component sets. Sets are

grouped by component type and by a where predicate

that can use attributes such as host name, position, node

capabilities, to group components when they are discovered.

In Figure 2, the three sets: t, sm and sp will group all com-

ponents of types Temperature, Smoke and Sprinker re-

spectively running on floor floor of the building. CHOREO

workflows and configurations can be instantiated multiple

times and discovered components can be members of more

than one set. For example, the fire alarm configuration can

be instantiated for each floor.

Compilation and Distribution. In Figure 3 we show

the stages for workflow compilation and distribution. In

the former, each workflow is translated into a finite state

machine form. This is passed to the GOANNA finite state

machine compiler [14] which verifies several properties and

generates a distribution implementation. Properties checked

include correct ordering between an invoke and its reply,

progress and safety (e.g., a waterOn call always follows

a high temperature and smoke detection). The distribution

stage decomposes each finite state machine (workflow) into a

collection of local ones and a skeleton. Local state machines

are passed to the finite state machine (FSM) manager at

each host while the skeletons are passed to a leader process

running on some host and its backups running on other

167

hosts. Managers and the leader implement a version of the

Paxos with Steady State consensus protocol to ensure the

correctness of the distributed workflow implementation.

III. CHOREO LANGUAGE

CHOREO is based on BPEL [13] but is designed to

be used for the orchestration of pervasive services. The

syntax for CHOREO workflows is given in Figure 4. Note:

Blocks are grouped lexically using indentation instead of

syntactically (like in Python). The language supports the

following workflow activities:

• invoke - this activity calls a service on a specified set.

By default, invoke calls one randomly selected service

from the set. The random selection is done using a

fair coin toss and is implemented by the GOANNA

execution platform. Replies to this invocation will be

made available to the workflow through a notification

object. By specifying the keyword all, the invocation

will be broadcast to all the services in the set and the

notification object will receive all replies. The keyword

oneway can be used if the service does not return a

reply or if the workflow is not interested in the reply.

• wait - this activity is used to block the execution of a

workflow for the following cases: waiting for a reply to

an invocation (wait notification), waiting for a service

to make a call to another service (wait call), waiting

for a service to receive a request from another service

(wait request), and waiting for a specific time duration

(wait timeout).

• pick selects the first wait activity that completes and

executes its associated activity sequence.

• seq executes a list of activities in sequence, while flow

executes a list of activities in parallel. flow assumes that

the activities are mutually-independent, and that there

is no need for synchronisation between them.

• if, while and foreach implement conditional choice and

iteration.

It is worth noting, that we have departed from traditional

workflow concepts where invoke is performed on a particular

service and the result notification is strictly linked to the

service. We believe that set-based invocations are more

appropriate for pervasive environments where there can be

a large number of services offering the same operations

and where all or some results are needed. For example,

this approach is often used to orchestrate sense-and-react

applications.

Monitoring of service interactions also plays an important

part in adapting an application’s behaviour. To this end,

CHOREO extends the semantics of a typical wait activity to

observe interactions between different services, using wait

call and wait request. wait call allows the workflow to

monitor the invocation of a service call at a component,

whereas wait request allows the workflow to monitor the

arrival of a service request at a component.

1 workflow = workflow workflowname "(" formalparams ")"

sequence

2

3 sequence = [seq] (flow | pick | wait | invoke | if | while

| foreach | skip)+

4

5 flow = flow sequence+

6

7 pick = pick wait+

8

9 wait = wait event sequence [exception sequence]

10

11 event = notification "(" notificationname ")"

12 | call "(" fromsetname, tosetname, servicename ")"

13 | request "(" fromsetname, tosetname, servicename ")"

14 | timeout "(" timeexpression ")"

15

16 invoke = invoke [all] setname "." servicename "(" params

")" "=>" (notificationname | oneway)

17

18 if = if booleanexpression sequence [else sequence]

19

20 while = while whileexpression sequence

21

22 foreach = foreach foreachexpression sequence

23

24 skip = skip

25

26 params, names, expressions omitted

Figure 4. CHOREO syntax

IV. HANDLING FAILURES IN A WORKFLOW

During the execution of a workflow there is always

a possibility of failures. CHOREO workflows can handle

invocation failures and wait timeouts.

The invoke activity represents an asynchronous invocation

(as opposed to BPEL’s invoke activity which represents

a synchronous invocation) and hence it does not raise an

exception if the services in the invocation set are unreachable

or if the set is empty. The underlying GOANNA layer will

attempt to discover services and deliver the service call to

them. The corresponding wait notification will block for a

specified timeout specified per set, in a configuration file.

If GOANNA fails to discover or reach any services for an

invoked set, the corresponding wait notification activity will

receive an exception. Furthermore, if the notification is not

received within this timeout period and exception will also

be raised.

1 invoke set1.service1() => n1

2 wait notification(n1)

3 invoke set2.service2() => oneway

4 exception

5 invoke set2.service3() => oneway

The pick activity can be used to specify the timeout period

for more than one wait as in the following example:

1 invoke set1.service1() => n1

2 invoke set2.service2() => n2

3 pick

4 wait notification(n1)

5 skip

6 wait notification(n2)

7 skip

8 wait timeout(1000)

9 invoke set3.service3() => oneway

168

V. GENERATING A STATE MACHINE REPRESENTATION

OF A WORKFLOW

CHOREO workflows are compiled into a GOANNA finite

state machine by the CHOREO compiler. The GOANNA

finite state machine is then decomposed into a collection of

local state machines that can be distributed and executed

in a completely distributed way. Each GOANNA finite state

machine consists of: (1) Set of states S, where every state is

a member of N0. (2) Set of transitions T , where a transition

is a tuple defined as: [Sstart, Send, token].
A token is an element of the following set:

{invoke, event, exception, cond, !cond}. The invoke

token corresponds to executing an invoke activity. The

event and the exception tokens are used to represent the

wait activity, as shown in the Figure 6. The event token

represents the start of the sequence associated with a

notification, call, request or timeout part of the wait’s

specification. Whereas, the exception token represents the

start of the exception sequence. The tokens cond and !cond

are used to express transitions based on whether an if ’s and

while’s condition has been evaluated as true or false.

The algorithm for translating a CHOREO workflow into

a finite state machine is:

1 generate(Sequence s) return fsm

2 Set states = {0};

3 Set transitions = {};

4

5 forall activity in s

6 last = states.last; -- state with the greatest n

7 case activity is

8 invoke : s1 = states.addNew;

9 transitions.add([last, s1, activity]);

10

11 wait : s1 = states.addNew;

12 s2 = states.addNew;

13 transitions.add([last, s1, wait.event]);

14 transitions.add([last, s2, wait.exception]);

15 connect(s1, generate(wait.eventSeq));

16 connect(s2, generate(wait.exceptionSeq));

17

18 if : s1 = states.addNew;

19 s2 = states.addNew;

20 transitions.add([last, s1, if.cond]);

21 transitions.add([last, s2, if.not_cond]);

22 connect(s1, generate(if.condSequence));

23 connect(s2, generate(if.not_condSequence));

24

25 foreach :

26 for 1 to foreach.N

27 connect(last, generate(foreach.sequence));

28 last = states.last;

29 end

30

31 while.withPredicate :

32 s1 = states.addNew;

33 seq = generate(while.sequence);

34 seq.lastState(last);

35

36 transitions.add([last, s1, while.cond]);

37 connect(s1, seq);

38 s2 = state.addNew

39 transactions.add([last, s2, while.not_cond]);

40

41 while.isTrue :

42 seq = generate(while.sequence);

43 seq.endState(last);

44 connect(last, template);

45

Figure 5. Flow interleaving example

46 flow :

47 connect(last, interleave(flow.sequences))

48 end

49 end

50 return [states, transitions];

51 end

The workflow is represented as a sequence activity which

is passed as the parameter for the initial invocation of the

generate function. The state machine is constructed with an

initial state 0. In case the next activity in the sequence is an

invoke, a new state is added to states and the invoke activity

is used as token to create a transition between the last state

and the newly created one.

For other activities, the algorithm simply creates the struc-

tures corresponding to their respective templates which are

shown in Figure 6. The connect function replaces the initial

state (start in templates) of the state machine, given as the

second parameter, with the state, given as the first parameter.

For while templates it is not enough to simply connect the

last state of the currently generated state machine with the

while’s sequence, one must also loop back to the last state

of the currently generated state machine. In order to do this,

before calling the connect function, the algorithm generates

the while’s sequence and puts the current last state as the last

state of the generated sequence (effectively looping back).

However, there is no template for the flow activity since

this structure interleaves transitions from all the sequences

that it contains. It is assumed that there is no synchronisation

between the finite state machines and thus all possible traces

are produced (Figure 5). The interleaving algorithm is based

on the interleaving operator (|||) from the CSP language

[15].

Figure 7 shows the state machine obtained by translating

169

Figure 6. State Machine-based Templates

the case study presented in Figure 1. The numbers between

the ”[” and ”]” brackets represent the line number that a

particular token represents. Figure 8 shows the GOANNA

version of the state machine. This is defined by a list of

epsilon moves and events each followed by its transition

rules. A transition rule has the form s1 - s2: condition

-> action1. This is applied when its event is observed,

the current state of the global state machine is s1 and the

condition is true. The rule’s action is performed and the

state updated to s2. An action that contains a signal to

c in setName serviceName primitive defines a call to

the service serviceName on a component belonging to the

set setName and c is the name assigned to the component

chosen for the call.

Wait events are expressed using the syntax serviceName

on set1 to set2 which denotes a serviceName response

sent by a component belonging to the set set1 to a

component in set2. For instance getTemp on tempSet to

* denotes a getTemp response event sent by a component

belonging to tempSet to a component in * (i.e., an unknown

set).

A. State machine decomposition

The GOANNA compiler decomposes a workflow’s finite

state machine into a set of local ones (one for each set),

plus a skeleton. A local state machine contains all events

local to its set plus some epsilon moves. The epsilon moves

1The initial state is the first listed

Figure 7. Finite state machine for Fire Alarm Workflow

Figure 8. GOANNA version of FSM

can be either those where no condition is defined (i.e., any

component can perform them) or the ones that the set relates

to. The skeleton contains all timeout rules. In Figure 9 we

show the local state machine related to the set tempSet. It

contains the rules related to the service getT emp() plus the

related epsilon moves.

Figure 9. The local state machine for tempSet

170

VI. RUNTIME IMPLEMENTATION

As we have seen previously, our architecture (see Figure

3) is composed of an FSM manager local to each host, a

leader and set of backups. The leader (see Figure 10) holds

the workflow skeleton and the current global state of each

workflow instance. A local timer is used to notify time out

events. These events can change a state when a timeout

transition rule is applied. A structure is used to maintain

for each set all hosts containing at least one component

belonging to the set. This is used to implement the invoke

when a broadcast is required. A lock is used to avoid race

conditions during state updates, while the key denotes the

protocol instance. Each FSM manager has a loader that

searches a local directory for new components. When a new

component is found, the loader loads its code and evaluates

all sets the components belongs to. This is performed by

matching the component type with each set definition and

verifying all constraints defined by the where clause, e.g.,

current location and host name. When a new set is populated

the related local state machine is loaded and the leader

updated. The backups are managers that hold, for each state

machine instance, a copy of the global state. This allows

recovery in case of leader failures.

FSM managers and the leader implement the Multi-Paxos

with Steady State protocol [12]. The basic idea is that the

leader and a majority of backups hold the last updated states

for each state machine instance. Managers have their local

states but these can be out of date. Managers propose a

new global state based on its local ones. If these are out-

of-date, the manager will get synchronised by the leader

and it can retry with the updated states. When managers

want to apply transition rules, at the same time, the leader

will randomly pick one of them up. This validates the

constraints imposed by each global state machine, that is

when a state is exited by two transitions only one of them

can be applied at the same time. The chosen manger applies

the rules (i.e., execute the related actions) and updates the

new global states on the majority of backups. We use the

Multi-Paxos with Steady State protocol in order to propagate

each new state through the backups. In particular, this is

enriched with timeouts and additional messages in order to

synchronise the managers and to correctly execute actions of

the state machines. Paxos protocols are normally described

using client, acceptor, learner, and leader2 roles. In our

implementation the client, acceptor and learner roles are

included in the FSM manager.

In Figure 10 we show the message flow for a successful

protocol execution of the fire alarm system. Suppose that

a FSM manager observes an event start yellow from a

sprinkler component and its FSM instance is in state 10.

Suppose further that the leader also has the state of the

FSM instance equal to 10 and that the instance has not been

2The leader is also known as the proposer.

manager leaderC
instrumentation

point

propose(result)

response

actionExecuted(key,newStates)

validate(c,e)

accepted

Ai=qi
lock

key

Ai,qi

key

Ai,qi

backups

accept(newStates)

unlock ()

accepted(newStates)

lock ()

Figure 10. Run time execution

locked. Since the FSM manager can match start using

the rule 10-0: {} -> {} (this has been projected to the

local sprinklerSet FSM from the global FSM of Figure 8)

it starts a protocol instance sending a propose(result)

message to the leader. This contains the state machine

instance and the related state of acceptance (i.e., s = 10).

The leader compares the received state s = 10 with the

current state sk = 10. Since they are the same and its

FSM has not been locked by another manager the leader

generates a response message which contains a new key

which promises to the manager the lock on its state machine

instance. The manager receives the request, performs the

local action (none in this case) and performs all epsilon rules

following the new state 0 which is either the chain 0-1 and

1-3 or 0-2 and 2-4. These cause the signal on temp and

smoke component instances. After all epsilon moves have

been performed the manager sends back to the leader an

actionExecuted(key, newStates) reply where key is the

protocol instance key and newStates is either 3 or 4. The

leader receives the reply and checks the existence of the

key. In the case that the key already exists it deletes the key,

updates the skeleton state, updates all backup managers and

unlocks the skeleton. The update of the backups require that

the majority of them correctly update the new state.

Different exceptions can be raised during protocol exe-

cution. A manager out of sync exception is received by a

FSM manager if it proposes states, which are out-of-date

with respect to the leader. In this case the FSM manager is

updated. A locked exception is received by a FSM manager

when the skeleton has been already locked. A manager

timeout exception is raised on the leader side when a

manager receives the permission to apply a rule but does

not respond with an actionExecuted message. This can be

a consequence of a manager fault or an action that is slow to

execute. In this case the leader deletes the key and unlocks

the skeleton. Managers always retry after an exception until

171

Figure 11. Response Time (ms)

this is propagated at the workflow level. In our protocol,

special managers are entrusted to detect a leader failure.

More specifically when the leader is no longer available

managers detect it, a new leader is elected and all correct

global states recovered from the backup managers.

VII. PERFORMANCE

A distributed implementation of a logically centralised

state machine specification brings overheads in terms of

network traffic and synchronisation time. In this section we

examine the time and memory overheads of our approach.

In order to study the overall performance of our dis-

tributed implementation, we looked at the time it takes to

perform a state machine transition and also the number of

requests that a leader can handle per second (throughput).

Effectively the latter measures the additional traffic gener-

ated by our distributed state machine implementation.

There are three versions of our underlying GOANNA plat-

form, one for Java 1.5, one for C, and one for TinyOS/NesC.

For this paper we report on using the GOANNA for Java 1.5

version running on a 100 Mbit network of ten Pentium IV

3.2GHz machines each with 2GB of RAM running the Linux

operating system. This setup has a fast CPU and network but

high overheads in terms of memory consumption and RMI

of Java 1.5.

We performed the evaluation on three different configura-

tions to show the effect of increasing distribution: (A) one

manager and one leader; (B) three managers and a leader;

(C) ten managers and a leader. For each configuration we

ran the same three experiments. We ran systems with 10, 50

and 100 smoke and temperature sensor components. More

specifically each sensor component was run in a separate

thread and sent a reading every 400 ms. For configuration A,

all sensors were run on the same host. For configuration B, a

third of the sensors were run on each host. For configuration

C, a tenth of the sensors were run on each host.

Figure 11 shows a manager’s response time for all three

configurations. Each value was obtained by running the

experiments for 10 minutes and calculating the average of all

Component type Code (bytes) Data (bytes)

Manager 1120 58

Leader 890 34

Temperature Component 4530 40

Temperature local state machine 870 12

Figure 12. TinyOS 2 Code and data sizes

transition execution times. For example, in the case where

100 sensors were running at the same time, the results

were as follows: 713 ms for configuration A ; 349 ms for

configuration B and 74 ms configuration C. This shows that

the protocol scales linearly when components are distributed

across different hosts. The critical bottleneck is the manager

and not the leader. The manager performs most of the

computation, i.e., creates a new thread for each component

instance, verifies acceptance and applies the actions. The

leader only responds to requests by sending a few integers.

We also evaluated the throughput for the case of a single

manager and a leader. In this case, the leader received an

average of 86 requests per second; each request is 2 bytes.

For Java 1.4 the heap and data memory consumption is

900 KB for a manager, and 489 KB for the leader (in the

worst case). The local state machine descriptions averaged

about 1.5 KB in size. Most of the overheads of this are due to

Java. In contrast, our implementation for TinyOS2 running

on TmoteSky sensors is much more lightweight (see Figure

12).

VIII. RELATED WORK

Service orchestration in pervasive environments has been

explored by Berger et. al [5] and Ranganathan [4]. Their

work looked at how pervasive web services can be or-

chestrated from a workflow engine running on a user’s

mobile device. Similar approaches include Pajunen et. al

[7] and Hackmann et al. [8]. In our work, we address a

wider challenge, were orchestration behaviour is distributed

among the pervasive services and infrastructure. An earlier

example of this, is ORBWork [16], which used CORBA

components to implement services and ORBWork nodes

to invoke these services. The order of invocations was

statically distributed to all nodes. A similar approach was

more recently implemented in SwinDew [17] and CiAN

[18]. None of these systems handles dynamic systems or

failures nor do they automatically decompose orchestrations

into choreographed execution. A very different approach to

distributed execution is presented in Montagut et al. [6]

where workflow instances migrate from one workflow node

to another. Similarly in [19] Manolescu advocates the use

of continuations to effectively freeze a workflow instance

and restart it in a different execution environment. However,

even though the migrating workflow operates over multiple

execution nodes over a period of time, it does not handle

the failures of the nodes that are currently executing the

workflow. Furthermore, the migration, by itself, does not

172

solve the synchronisation issues when the workflow is being

executed by multiple nodes at the same time. As the previous

sections have indicated, these issues represent the core goals

of our distribution model.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a novel approach for

the distributed orchestration of pervasive services where

logically centralised workflows are automatically compiled

into choreographed implementations using synchronised fi-

nite state machines and an underlying consensus protocol.

Our workflow language is based BPEL but extended to

support communication primitives more suited to pervasive

environments. For our future work, we plan to support the

concept of a human-centric task as part of the workflow

and to extend the language to support goal-driven workflows

with more flexible ordering of activities. In addition to

these proposed extensions, we are currently investigating

suitable transaction and rollback extensions to our finite state

machine execution model.

Our future work effort regarding the implementation and

its testing will be to assess the energy-consumption of

the computations needed to run a CHOREO workflow in

wireless sensor networks.

X. ACKNOWLEDGEMENTS

This research was supported by UK EPSRC research

grant EP/D076633/1 (UBIVAL) and EU FP7 research grant

213339 (ALLOW).

REFERENCES

[1] B. Benatallah and H. R. M. Nezhad, “Service oriented archi-
tecture: Overview and directions,” in Lipari Summer School,
2007, pp. 116–130.

[2] A. Deshpande, C. Guestrin, and S. Madden, “Resource-aware
wireless sensor-actuator networks.” in IEEE Data Engineer-
ing, 2005.

[3] E. Asmare, A. Gopalan, M. Sloman, N. Dulay, and E. C.
Lupu, “A mission management framework for unmanned
autonomous vehicles,” in MOBILWARE, 2009, pp. 222–235.

[4] A. Ranganathan and S. McFaddin, “Using workflows to co-
ordinate web services in pervasive computing environments,”
Web Services, IEEE International Conference on, 2004.

[5] S. Berger, S. McFaddin, C. Narayanaswami, and M. Raghu-
nath, “Web services on mobile devices-implementation and
experience,” Mobile Computing Systems and Applications,
2003. Proceedings. Fifth IEEE Workshop on, pp. 100–109,
Oct. 2003.

[6] F. Montagut and R. Molva, “Enabling pervasive execution
of workflows,” 2005 International Conference on Collabora-
tive Computing: Networking, Applications and Worksharing,
2005.

[7] L. Pajunen and S. Chande, “Developing workflow engine
for mobile devices,” 11th IEEE International Enterprise Dis-
tributed Object Computing Conference, 2007.

[8] G. Hackmann, M. Haitjema, C. Gill, and G.-C. Roman,
“Sliver: A bpel workflow process execution engine for mobile
devices,” Service-Oriented Computing –ICSOC 2006, pp.
503–508, 2006.

[9] M. Younas, I. Awan, R. Holton, and D. A., “Duce: A p2p
network protocol for efficient choreography of web services.”
in AINA, 2006, pp. 839–846.

[10] R. Guerraoui and L. Rodrigues, Reliable Distributed Pro-
gramming. Springer, 2006.

[11] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made
live: an engineering perspective,” in PODC ’07, 2007, pp.
398–407.

[12] L. Lamport, “Paxos made simple, fast, and byzantine,” in
OPODIS, 2002, pp. 7–9.

[13] K.-M. Chao, M. Younas, and N. Griffiths, “Bpel4ws-based
coordination of grid services in design.” in Computers in
Industry, 2006, pp. 778–786.

[14] L. Mostarda, D. Sykes, and N. Dulay, “A State Machine-
Based Approach For Reliable Adaptive Distributed Systems,”
in 7th IEEE International Conference and Workshops on
Engineering of Autonomic and Autonomous Systems, March
2010.

[15] C. Hoare, Communicating Sequential Processes, ser. Prentice
Hall International Series in Computing Science. Prentice
Hall, 1985.

[16] S. Das, K. Kochut, J. Miller, A. Sheth, and D. Worah, “Orb-
work: A reliable distributed corba-based workflow enactment
system for meteor2,” Tech. Rep., 1997.

[17] J. Yan, Y. Yang, and G. K. Raikundalia, “Swindew-a p2p-
based decentralized workflow management system,” IEEE
Transactions on Systems, Man, and Cybernetics Part A -
Systems and Humans, 2005.

[18] R. Sen, G.-C. Roman, and C. Gill, “Cian: A workflow engine
for manets,” Coordination Models and Languages, pp. 280–
295, 2008.

[19] D. A. Manolescu, “Workflow enactment with continuation
and future objects,” SIGPLAN Not., vol. 37, no. 11, pp. 40–
51, 2002.

173

