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Abstract

We present an approach to provide Intrusion Detec-
tion Systems (IDS) facilities into Wireless Sensors Networks
(WSN). WSNs are usually composed of a large number of
low power sensors. They require a careful consumption
of the available energy in order to prolong the lifetime of
the network. From the security point of view, the overhead
added to standard protocols must be as light as possible
according to the required security level. Starting from the
DESERT tool [2] which has been proposed for component-
based software architectures, we derive a new framework
that permits to dynamically enforce a set of properties of
the sensors behavior. This is accomplished by an IDS spec-
ification that is automatically translated into few lines of
code installed in the sensors. This realizes a distributed sys-
tem that locally detects violation of the sensors interactions
policies and is able to minimize the information sent among
sensors in order to discover attacks over the network.

1 Introduction

A Wireless Sensor Network (WSN) usually consists of
a number of sensors of different modalities which, when
combined with a microprocessor and a low-power radio
transceiver, form a smart network-enabled node. The
sensed data can be related to different applications but in
terms of capabilities all the nodes that cooperate in the WSN
can be assumed as homogeneous. Concerning the appli-
cations, medical services, battlefield operations, crisis re-
sponse, disaster relief, environmental monitoring, premises
surveillance, robotics are included. Because of the critical
environments where such kind of networks may be used,
we are interested in investigating security issues. Such kind
of networks are in fact frequently subject to attacks by ma-
licious intruders. Intrusions take place by a sequence of
actions that aim to subvert the network system. There are
many vulnerabilities and threats to a mobile WSN. They in-
clude outages due to equipment breakdown and power fail-

ures, non-deliberate damage from environmental factors,
physical tampering, and information gathering (see [8] for
an extended survey).

In this paper we are interested in the so called active kind
of attacks where the detection of malicious behaviors can be
locally detected by observing the traffic over the network
(see for instance [7]). We focalize our attention on Intru-
sion Detection Systems (IDSs) that analyze the observable
behaviors of the system.

More precisely we are interested in Specification-based
IDSs [2, 3] which use some kind of formal specification to
describe the correct behavior of the system. The detection
of violations involves monitoring deviations from the for-
mal specification. The advantage of this approach is the
ability to detect previously unknown attacks at the expense
of providing a formal specification of correct information
flows.

Intrusion detection techniques are successfully applied
to wired networks, however most of them are not suitable
for the wireless context. The inadequacy of standard IDS in
WSNss is a consequence of the open medium access, of the
dynamic topology, of the cooperation needed among sen-
sors (collaborative algorithms) and the lack of a fixed topol-
ogy where all information flow. The detection of an attack
may not be possible by only considering the traffic locally
sent/received by a sensor. Therefore, there must be some
form of correlation among the data received by the sensors.
This would allow to discover attacks that are scattered over
several sensors.

Besides the problems mentioned above, in mobile WSNss
the detection has to address the problems imposed by the
limited battery, restricted computational power of the sen-
sors, low bandwidth and slower links. Moreover, mobility
of the sensors can complicate the detection since the correct
behavior of sensors is location dependent (i.e., the sensors
correct behavior can change over the time). In summary,
an IDS for a mobile WSN should: (i) be decentralized;
(i) minimize the traffic overhead; (iii) address the mobil-
ity problem.

Based on the DESERT tool [2] we verify the applica-



bility and effectiveness of specification-based intrusion de-
tection in a mobile WSN. We enhance the DESERT tool in
order to build a peer-to-peer IDS for mobile WSNs. We
describe the correct sensors communications by means of
a formal specification. Such a specification is divided in
different parts in order to distribute and share the workload
hence reducing the energy consumption of single sensors.
In order to validate and to explain in more details this ap-
proach we apply it on a recent proposed routing protocol,
CoP [6], for mobile WSNs. Notice that, while the formal
specification directly derives from the considered protocol,
the method is completely independent of it, in the sense that
it can be used on any kind of protocol for mobile WSNs in
order to add security aspects.

2 DESERT Tool and mobile WSNs

The DESERT tool is a specification-based intrusion de-
tection system that allows the monitoring of a distributed
black-box component application (see Figure 1.(a) for a de-
scription of its basic steps). The application to be moni-
tored is assumed to be composed by a set of components
{C1,...,C,} that run concurrently and interact each other
exchanging messages. Each component C' has associated a
set of messages {m¢ ... mic}, with ¢ > 1, (i.e., the com-
ponent interface description) where mJC, with 1 < 5 <4,
encodes information about the type of communication, i.e.,
a request or a reply, the kind of service and its parameters
and the (returned) data. In particular, mjc =la (mjc =7b)
denotes that the component C' sends (receives) a message
a (b) to (from) another component. The original DESERT
tool assumes that: (i) each component of the system has a
unique instance; (ii) a component cannot change location;
(iii) a component cannot change its interface and behav-
ior. From the point of view of mobile WSNs, from now on,
we identify the black-box-components of the DESERT tool
with the sensors. Being a black-box-component for a sen-
sor means we do not have the code of the sensor but we can
observe its interactions with the environment.! Clearly the
previous assumptions cannot be now guaranteed. The more
evident is (ii) since we are in a mobile environment while
for (i), there are usually more sensors playing the same role.
Concerning (iii), in general, in WSNs the sensors change
their behavior according to their actual role in the network.
The idea is usually to guarantee a balanced consumption of
the energy of all the sensors participating in the protocol.
As we are going to see in the next section, in the CoP pro-
tocol [6] the roles change depending on the actual positions
of the sensors. We therefore remove assumptions (i), (ii)
and (iii), hence obtaining a framework able to work with
all those protocol for WSNs in which sensors have different

Indeed we observe the interactions with its transmitting/receiving sys-
tem, enabling it according to the specified polices.

behaviors according to a predetermined set of roles. The
security aspects that we want to guarantee by this method
concern the monitoring of the normal behavior of the sen-
sors participating in a given protocol.

3 Connectionless Probabilistic (CoP) routing

The CoP protocol [6] for routing on mobile WSNs as-
sumes a uniformly distributed set of sensors inside a given
area. The only thing that each sensor needs to know in or-
der to participate in the CoP protocol is its own location and
the location of the sink (the fixed infrastructure outside the
sensed area). In such a model, a communication session
begins when a sensor needs to inform the sink about some
collected information of interest. The key idea of the CoP
protocol is that the saving of energy is achieved not only
by choosing an appropriate path between source and des-
tination pairs but also by eliminating all the transmissions
usually needed by other protocols to choose the next hop
node or just to communicate the positions of the nodes (see
for instance [4]). Clustering methods are used to reduce
the number of needed hops to establish the required com-
munication session and hence reduce the average routing
time. To this end, a two-level communication model was
proposed where each node is itself candidate to be either a
normal sensor or a clusterhead.

Messages are routed on a virtual infrastructure repre-
sented by a grid covering the sensed area. Since the sensors
are randomly spread on the area of interest, a distortion pa-
rameter called ds is fixed to be the maximum distance from
a virtual grid node (VG N) where the real sensor has to re-
side in order to candidate itself and become a clusterhead.
Roughly speaking this means all sensors in the fixed range
of a VGN “believe” they are grid nodes. All the other re-
maining sensors are themselves associated to some VGN
just by the minimum distance, hence determining an area
(Avan) associated to each VGN. Notice that if more than
one sensor resides inside a described circular area, a stan-
dard local “leader election” is performed [5]. In [6] it is for-
mally described how to estimate the right value for ds in or-
der to achive a high probability to have a sensor inside each
Ay an. The configuration can easily change with time, ac-
cording to the degree of the sensors’ mobility but each one
can decide which is the closest clusterhead-area or if it is a
clusterhead itself. If a sensor is a clusterhead, it can transmit
the collected information to the next clusterhead-area in or-
der to reach the sink. Since the transmission needed power
of a non-clusterhead node is less than the one needed by
a clusterhead, in order to prolong the lifetime of the entire
network, a sort of rotation in the roles could be convenient.
According to the frequency of the communications and the
mobility of the nodes, if the network is characterized by
high mobility, then every node frequently changes its status



from clusterhead to non-clusterhead and vice-versa depend-
ing on its actual location and therefore mobility works in
favor of a fair and uniform energy consumption in the CoP
protocol.

3.1 Adapting the model

In the field of location-awareness and clustering proto-
cols like CoP, we model a mobile WSN by a set of sen-
sors AH = {C1,Cs,...,C,}. Let L C AH be a subset
{l1,1,...,l;n} of sensors identifying the clusterhead of a
given protocol P. In other words, the sensors in L charac-
terize a set of areas Ar = {Ary, Aro, ..., Ar,, } (clusters)
where each area Ar; represents the portion of the sensed
area where the corresponding /; plays the clusterhead role.

There can be various roles according to P, let R =
{R1,Ra,...,R,} be the set of roles. Each R; has asso-
ciated a set of possible messages {mi, ma ...m*} (i.e
the role interface). In general a sensor C; can change its
role from R; to R; as a consequence of: (i) changing the
location; (ii) a message sent/received by the sensor.

Definition 1 Let C be a sensor instance. T = m§ m§ms§

.mgmg ... is alocal sensor trace of C if each my is a
message that codifies either a request or a provided service
of the sensor C.

Definition 2 Given two local sensor traces Tg,:
C1, C1,  Ci Ci1, Ci1 . Ca, Co

mytmytmgt ... mytmg and Tc,: my*mg
02 Cz Cz

mg my*myt, ..., a merge trace To, @ Tc, is a

sequence defined by mimoms ... mjmjy1 ... where: (i)
my € To, ® Te, if and only if m, € Tc, or m, € Tg, (ii)
for each m; and m; € Te, UTg, ift(m;) < t(m;)then m;
appears before m; inTo, ® Tg,.

According to the previous definitions, in a mobile WSN,
we can recognize one architectural system trace for each de-
fined area A,,. Each running sensor C; of the area A,., has a
role I2; and defines a local component subtrace T¢;. In par-
ticular, an architectural system trace is generated by mes-
sages exchanged among all the sensors contained in 4,,. A
global automaton models the correct exchange of messages
among sensors playing different roles and residing in (i) the
same area; (ii) an adjacent area. Our main purpose is to
monitor the architectural system traces of each area in order
to detect violation of the properties expressed by the global
automaton.

3.2 DESERT Tool and CoP

Starting from the description of the CoP protocol we now
point out some basic properties that should be guaranteed in
order to obtain a fair behavior of the protocol. In what fol-
lows we distinguish the sending operation of a clusterhead
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Figure 2. Global automaton

from the one made by a normal sensor (non-clusterhead)
just by referring to the first one as a forward operation.

1. For each grid node there must be at most one sensor
playing as clusterhead.

2. When a finite amount of data has been collected by a
clusterhead, it must be forwarded in the correct direction.

3. A clusterhead that changes its status to normal sensor
due to a movement or because of the draining battery has to
forward all the collected messages before its movement.

4. All messages forwarded by a clusterhead have to be
received by the clusterhead of the adjacent VGN area.

5. When a clusterhead leaves its role a new sensor (if any
in the area) has to take its role.

We formalize these properties by defining a state ma-
chine that will be given in input to our tool in order to pro-
duce the distributed “patch” for the sensors participating in
the CoP protocol.

In Figure 1.(b) we show the four types of roles that each
sensor can assume and the corresponding messages accord-
ing to the described CoP protocol. Considering each Ay oy
we define the Out-range, the In-range and the Clusterhead
sensors residing in it, and an Extern sensor representing the
clusterhead associated to an adjacent VG N. The role Out-
range Sensor(src) models a sensor located in a position src
that is inside the Ay gy but at distance greater than ds from
the corresponding VGN. The role In-range Sensor(src)
models a sensor located in a position src inside an Ay gy
and at distance at most ds from the corresponding VGN.
The role Clusterhead(src) is the one played by the sensor
that provides the transfer of the messages msg towards the
right sink. Finally, the role Extern models one of the clus-
terheads surrounding the current Ay oy. Figure 2 shows



the global automaton related to the sensors based system of
figure 1.(b). This automaton defines the correct sequences
of messages inside an Ay g y. Our aim is to distribute the
global automaton in a set of local automata that are assigned
one for each sensor according to their actual roles. A local
automaton constitutes the basis to build a filter that locally
monitors the sensor instance interactions.

4 Distributing security features

In this section we describe the technique of filters gen-
eration roughly showed in Figure 1.(a) and we illustrate its
applicability on the CoP protocol. The algorithm to dis-
tribute the global automaton creates a local one for each
sensor role. The local automaton of the role C' constitutes
the basis to realize a filter (we will denote it by S¢). In
the following we describe the two main phases of the al-
gorithm, i.e., local automata generation and dependencies
generation.

4.1 Local automata generation

This phase considers in input the global automaton A =
(Q,q0, I,6) and a C sensor interface (i.e., the messages
sent/received by C). The output is a preliminary version
Se = (Qc, qc0, Ic, d¢) of the C-local automaton. ¢ is
obtained by considering each rule g1 = 6(q, m) defined in
A. In the case that m belongs to the interface of C' (m €
C) such rule is reflected in a S¢-rule ¢; = d¢ (g, m), the
states ¢ and ¢ are added to Q)¢ and the message m is added
to I¢. In other words, looking at the global automaton A,
the interactions sequence that happens locally on a sensor
C are projected on the local automaton S¢. However the
preliminary version of a local automaton is not sufficient to
realize the correct monitoring. Our solution is to allow a
filter to provide/accept context information by/to the other
filters. We call such information exchanged among filters
dependency information.

Definition 3 Let o be the filter of the sensor
role C. Dependency information is of the form
1f(m,{D1,Da,...,D,}) or 2f(m’,S) where
D1,Ds,...,D, and S range on the name of the sensor
roles. The message \f(m,{Dy,Ds, ..., Dy,}), outgoing
dependency, is sent by ¢ to filters Sp,,Sp,,...,SD,
in order to communicate that the C-sensor role message
m has been observed. The message 7 f(m’,S), incoming
dependency, is an incoming information sent by filter 3g.
With this information s communicates to S¢ that it has
observed a S-sensor role message m’.

A dependency information allows filters to synchronize
with each other to produce an architectural system trace that

validates the property expressed by the global automaton.
The dependencies are added to each local automaton by the
dependencies generation phase.

4.2 Dependencies generation

The basic entities to place dependencies are synchro-
nization and enabling states. A synchronization state of a
global automaton defines a state that is exited by different
transitions projected on different filters. In this case the
filters have to synchronize so that exactly one of these
transitions will be performed. By referring to the global
automaton A of Figure 2 the state g3 is exited by the tran-
sitions ¢ = d(gs,! forward_next(sre, dest, msg)),
qga = 0(gs,'send_in(src,dest,msg)) and q4 =
d(gs,!send_out(sre, dest, msg)). The state ¢3 is a
synchronization state of A since those transitions are
projected onto the filters related to Clusterhead, In-Range
and Out-range sensor, respectively. Dependencies are a
means for filters to synchronize so that exactly one of them
accepts its local sensor message.

An enabling state q of A defines a state ¢ that is entered
and exited by transitions projected on different filters. The
basic idea is that a filter, containing a g-exiting transition,
should apply this rule only when a g-entering transition has
been performed. This permits to correctly preserve the or-
dering imposed by the global automaton. In our example
the state ¢; is an enabling one since it is entered by the tran-
sition ¢; = §(qo, !leader(src)) and exited by g3 = §(q1,
Isend_out(sre, dest,msg)). This sequence of rules is pro-
jected onto the filters Sy, —range and Sout—range, respec-
tively. In this case the dependencies phase adds the rule
¢ = 0(qo, ?f(leader(src), In)) to the filter Sout—range-
Therefore Sout—range can move to the state g;, by means
of the rule g1 = §(qo,? f(leader(src), In)). However this
rule can be applied only when a filter S, —rqnge has ac-
cepted the !leader(src) message (i.e., the right ordering
among the messages is imposed). We call such type of de-
pendencies enabling dependencies since they are used (by a
filter) to correctly enable the filters-local computations.

In the case of WSNs, due to the open access medium,
some outgoing dependencies can be avoided. Let ? f(m, D)
be the incoming dependency sent by the filer S p to the filter
Se. In the case that Sp resides in the $¢-communication
range, S¢ could observe directly the I p-message m. Just
when the filter S¢ resides “far” from Sp the outgoing de-
pendency !f(m,C) must be explicitly added to the filter
S p. After the dependencies generation phase, the automa-
ton describing a filter may still have disconnected parts. We
use e-moves [1] standard methods to link the disconnected
parts in the right order obtaining a whole connected local
automaton for each filter.



4.3 Mobility aspects

As already noticed a sensor can change its location as
consequence of its mobility. This can change the role of the
sensor in the network hence its filter should refer to a dif-
ferent automaton. For instance when a sensor moves from
the Clusterhead role to the Out-range, its behavior must be
checked over the corresponding automaton. It can happen
that a state in the original automaton is not present in the
new one. In our example, g9 is not present in the automa-
ton of the Out-range role. In order to solve this problem we
propose two solutions. One is to define a mapping function
that takes in input a state ¢, of a role C’ and a role C", and
outputs a state ¢,, of the role C”’ that corresponds to ¢, in
C’. Such a function should be evaluated by the filters each
time the corresponding sensor changes its behavior (role).
The overhead is then given by the needed computations to
evaluate such a function.

Another solution is to enrich the messages by making
explicit the corresponding move on the local automaton in
such a way that the receiver can understand which depen-
dency on the local automaton is satisfied hence discover-
ing its current state. Coming back to our example when
the Clusterhead leaves its state qg, before discovering which
will be the current state over the automaton that describes
the Out-range role, it will have to observe some other sensor
sending the message ? f (! fn, extern) enriched with the in-
formation qg, q; . It will then be synchronized in the state g .
The overhead in this case is given by the extra information
we need inside each message. The right solution strongly
depends by the given protocol. From the energy consump-
tion point of view the first solution seems more suitable.

4.4 How to monitor malicious behaviors

The local automata are the basic specifications to build
our distributed monitoring system. Each filter implements
a local secure automaton and it is assumed to be interposed
between the environment and the sensor it has to monitor.
Before a filter can accept a local-sensor message has to (i)
send the synchronization dependencies in order to acquire
the right; (ii) if it gains the right then it has to send the
enabling dependencies to correctly preserve the order im-
posed by the global automaton. Moreover, it sniffs its radio
range and goes on when observing a message that matches
with an incoming dependencies or a message performed by
other filters of the same component type.

The filters monitor the local sensor behavior in order to
detect when they violate the policy expressed by the global
automaton. The overhead introduced by the filters distribu-
tion is due to the message exchanged among sensors resid-
ing on different Ay ¢y, since, in this case, the filters have
to explicitly synchronize with each other. On the other hand

this process permits also to discover eventual empty Ay oy
hence saving further messages with respect to the original
CoP protocol.

Generally speaking, a sensor discovers an attack and
inform its neighborhood when it observes a message that
does not match the one it is expecting or a time out on
the waited event is triggered. Notice that, if new sensors
without the wrapping filters are introduced in the network,
they are somehow forced to follow the right protocol since
the “good” ones observe and reveal forbidden actions mis-
matching waited interactions.

5 Conclusions

In the context of IDSs, we have presented a new frame-
work that outputs distributed secure protocols in the field of
mobile WSNs. We have applied it to a recent proposed pro-
tocol for mobile WSNs, CoP [6]. We have shown how it is
possible to wrap filters around the CoP sensors directly de-
rived from the automaton given in input which describes the
desired behavior of the system. The sensors are then syn-
chronized, when needed, by means of messages exchange,
hence they are able to detect intruders locally by themselves
and by means of collaborations.
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