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Abstract This paper proposes A4WSN, an architecture-driven modelling platform
for the development and the analysis of Wireless Sensor Networks (WSNs).

A WSN consists of spatially distributed sensor nodes that cooperate in order to
accomplish a specific task. Sensor nodes are cheap, small, and battery-powered de-
vices with limited processing capabilities and memory. WSNs are mostly developed
directly on the top of the operating system. They are tied to the hardware configura-
tion of the sensor nodes and their design and implementation can require cooperation
with a myriad of system stakeholders with different backgrounds.

WSNs peculiarities and current development practices bring a number of chal-
lenges, ranging from hardware-software coupling, limited reuse, and late WSNs qual-
ity property assessment. As a way to overcome a number of existing limitations, this
study presents a multi-view modelling approach that supports the development and
analysis of WSNs. The framework uses different models to describe the software
architecture, hardware configuration, and physical deployment of a WSN. A4WSN
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allows engineers to perform analysis and code generation in earlier stages of the WSN
development life cycle. The A4WSN platform can be extended with third-party plu-
gins realizing additional analysis or code generation engines.

We provide evidence of the applicability of the proposed platform by develop-
ing PlaceLife, an A4WSN plugin for estimating the WSN life time by taking var-
ious physical obstacles in the WSN deployment environment into account. In turn,
PlaceLife has been applied on a real-world case study in the health-care domain as a
running example. A case study based on home automation is presented as well.

Keywords MDE · Software Engineering · Software Architecture ·Wireless Sensor
Networks · Performance Evaluation

1 Introduction

A recent study predicted that in 2020 there will be 50 billion devices connected to the
Internet [20]. These are devices capable of performing various operations, such as
sensing data, actuating on the external environment, and so on. With this perspective,
WSNs are becoming an important part of a wide variety of applications and systems
including environment monitoring, energy metering, smart cities, health care and in-
telligent houses [59].

Wireless sensor networks are composed of low-data rate, low-cost and battery-
operated wireless components called sensor nodes. A sensor node is a small digital
device with communication, sensing, and limited processing capabilities. WSNs can
range from small scale networks such as body sensor networks with few nodes [73],
to large scale networks such as smart city applications with thousands of sensor
nodes [23].

Despite the increasing usage of WSNs in modern applications, their development
is still plagued by the following issues: (i) development is still performed directly on
the top of the operating systems and relies on individuals hard-earned programming
skills across all levels of the protocol stack [46]; (ii) WSN engineers must address
challenging extra-functional requirements such as performance, security, energy con-
sumption, with poor support for early testing, debugging, and simulation of WSNs
in an integrated fashion [30]; (iii) in order to achieve high level of efficiency, the
software of a WSN application is tied to specific hardware platforms, hampering the
reuse of source code and software components across different projects or organi-
zations [46]; (iv) due to the intrinsic multidisciplinary nature of the WSN problem
space, WSN engineers must continuously collaborate with a high number of system
stakeholders (e.g., users, application domain experts, hardware designers, and soft-
ware developers) with different background and training [59].

To tackle the aforementioned issues, the WSN community is becoming aware of
the need of using software engineering approaches in order to support the design,
analysis, simulation and implementation of WSNs [72,55].

This research proposes a novel modelling and analysis platform to support an
architecture-driven development of WSNs. The platform is called A4WSN1 and is

1 It stands for Architecting platform for (4) Wireless Sensor Networks
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based on a multi-view architectural approach [33] based on three modelling lan-
guages to describe a WSN from different viewpoints: (i) software components and
their interactions, (ii) the low-level and hardware specification of sensor nodes, and
(iii) the physical environment where sensor nodes are deployed, separately. Model-
driven engineering (MDE) techniques and tools are used to implement the modelling
framework through metamodelling, model weaving, and model transformation. The
modelling framework is supported by a programming framework that enables the
implementation of analysis and code generation plugins by third party developers;
they can be employed to assess and analyse the architectural design decisions, and
generate executable code, respectively.

The whole A4WSN platform is realised by exploiting advanced MDE techniques,
such as metamodelling, model weaving and model transformation. MDE allows us to
define the modelling languages of A4WSN in a seamless and well-disciplined man-
ner, and to realise the A4WSN programming framework so that it supports extensi-
bility and customisation by design. The platform is available at the project website2,
it has been downloaded 141 times (according to Google Analytics up to February
2017), and for the last two years it has been used in our software and system archi-
tecture courses. We provide evidence on the applicability of the proposed modelling
approach and on the extensibility of its programming framework by developing an
A4WSN plugin called PlaceLife. Placelife analyses A4WSN models of a WSN and
automatically assesses the lifetime of the network.

PlaceLife uses the A4WSN physical environment model that includes physi-
cal objects and material, thus providing an accurate WSN lifetime estimation. The
PlaceLife plugin has been applied to a realistic home automation case study. The
scenarios that can be considered using A4WSN are more realistic compared to ex-
isting simulation tools for WSNs, since the existing tools consider simplified models
of the environment (e.g., a free space model) due to the limitations stated above. In a
previous work [19] we made the first exploration for the feasibility of the modelling
and analysis platform, with special emphasis on energy consumption analysis. In that
work, the proposed modelling languages and the programming framework were not
mature yet. The main contributions of this paper can be summarised as follows:

– a multi-view modelling platform for engineering WSNs is presented in detail
(including a specification of the software architecture, low-level and hardware
specification, and physical environment);

– a programming framework is provided which enables the development of plugins
realising new code generation and analysis engines;

– the full development of the A4WSN prototype tool3 that implements the proposed
approach. This implementation is based on the Eclipse platform and can be inte-
grated with other MDE technologies already available in the Eclipse community;

– the implementation of the PlaceLife plugin that can be used for the prediction of
the WSN lifetime. This is a novel tool that incorporates the physical environment
(together with other factors) into the model in order to have better prediction.

2 URL: http://a4wsn.di.univaq.it/
3 A4WSN prototype: http://a4wsn.di.univaq.it
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The rest of the paper is organised as follows. Section 2 provides background in-
formation on WSNs, as well as the motivational example used throughout the paper.
Section 3 provides an overview of the A4WSN platform. Section 4 describes the pro-
posed modelling languages for WSNs, while Section 5 presents the programming
framework. Section 8 presents the technologies used to implement the A4WSN plat-
form. Section 6 focusses on the PlaceLife analysis plugin. Finally, Section 7 presents
related work, while the paper concludes in Section 8.

2 Background and Motivational Example

This section provides a background on wireless sensor networks, considerations to
motivate the need of our approach, and introduces the case study used throughout the
paper.

2.1 Background on Wireless Sensor Networks

WSNs consist of spatially distributed sensors that cooperate to accomplish some
tasks. Sensors are small battery-powered devices with limited processing capabilities
and memory. Currently, the processor frequency of WSN nodes range from 4MHz to
32 Mhz while the nodes have two Kb to 412 Kb memory capacities [46]. They can
be easily deployed to monitor different environmental parameters such as tempera-
ture, movement, sound, and pollution. Sensors can be distributed on roads, vehicles,
hospitals, buildings, and people in order to enable different applications such as med-
ical services, battlefield operations, crisis response, disaster relief, and environmental
monitoring.

WSNs can be event-driven or continuous operation types. Event-driven WSNs re-
port data to the base station (BS) only when certain events such as intrusion and fire
detection occur. Continuous WSNs report data to the BS at regular intervals. Patient
monitoring and temperature control are examples of applications that use continu-
ous WSNs. In communicating data to a BS either single-or multi-hop topology can
be used. When single-hop topology is considered, the nodes communicate with the
BS directly whereas in multi-hop, some of the nodes may act as intermediate routers
forwarding information on behalf of other nodes besides the usual sensing responsi-
bility.

The unique characteristics of WSNs introduce new challenges [67] in different
fields such as programming, security and software engineering. Researchers need to
face limited sensor resources in terms of computation capabilities and memory as
well as the limited lifetime of the sensors.

2.2 The WSN challenges and concerns

The issues outlined in Section 1 bring a number of WSN design and development
challenges. This section describes some of the most relevant challenges which can
be solved by abstraction and modelling. A summary of how the A4WSN framework
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Fig. 1 Typical Architecture of a WSN Application

addresses these issues is presented in Section 3.

Abstracting implementation details into a design view: the development of a WSN
application requires skills across all levels of the communication stack. A WSN ap-
plication developer has to be knowledgable on programming as well as all the layers
of the ISO/OSI reference model. Beside programming abstraction, abstracting an im-
plementation view into an architectural design is a well known need. As stated in
[55], “end users require high-level abstractions that simplify the configuration of
the WSN at large, possibly allowing one to define its software architecture based on
pre-canned component”. Abstraction is fundamental for future WSN development,
since sensors and WSNs in general are becoming important components in perva-
sive computing, and mobile systems, with new types of stakeholders (e.g., mobile
systems engineers, developers) and reduced domain-specific technical skills. Under
this perspective, approaches for abstracting the implementation details from the un-
derlying hardware and physical infrastructure are strongly advised [46,8]. However,
when current practices on WSNs are considered, the lack of engineering methods and
techniques to manage these challenges is evident. Some initial effort has been made
for architecting WSNs [37,28], and this paper goes along that line providing more
advanced solutions. A thorough comparison with related work is provided in Section
7.

Increase reuse: State of the art approaches mostly mix together software, hardware,
and networking perspectives during the coding or design phase. Hardware and soft-
ware components are locked and tied down to specific type of nodes, thus hampering
the reuse of source code and software components across different projects or orga-
nizations [46].
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Early WSNs quality property assessment: In traditional implementation-specific ap-
proaches engineers might afford to take structural and behavioural decisions at de-
ployment time. However, in WSN development it is important to take those sensible
decisions as early as possible, enabling the earlier and predictive analysis of both
functional and extra functional properties. This possibility becomes especially valu-
able in all those cases where the sensor nodes cannot be easily accessed once de-
ployed (e.g., WSN nodes embedded into concrete walls or WSNs deployed in hostile
environments).

In addition to challenges, while designing and implementing a WSN, engineers
and developers may face various concerns such as application energy efficiency [19],
dependability 4, coverage [29], networking and communication, and performance.

In order to address the aforementioned challenges and cover the outlined con-
cerns, we developed A4WSN, an architecture modelling platform that uses different
models for specifying WSNs. It provides a design view of the system, and hides
low-level details and complexities. A4WSN, being a multi-view approach includ-
ing different models which cover different concerns, increases separation of con-
cerns favouring the possibility of reusing software and hardware components across
projects and organisations. A4WSN enables model-based analysis techniques and
favour the earlier, predictive, analysis of both functional and extra functional proper-
ties.

2.3 The healthcare system case study

In this paper the healthcare system case study is used as running example in order to
help the reader in understanding the main concepts and design decisions considered
when engineering the A4WSN modelling languages. A case study based on home
automation is also presented in order to show the effectiveness of the architectural
approach and the PlaceLife plugin.

Recent technological advancements in WSNs have opened up new prospects for
a variety of applications, including healthcare systems [36,3,66]. WSN implemen-
tations on pervasive computing based healthcare systems avoid various limitations
and drawbacks associated with the wired sensors providing a better-quality of care,
quicker diagnosis, more intense collection of information and at the same time keep-
ing the cost and resource utilisation to minimal. Monitoring facilities introduced by
using WSNs are particularly useful for early detection and diagnosis of emergency
conditions, as well as keeping track of the diseases. WSN based healthcare systems
are also useful for providing a variety of health related services for people with vari-
ous degrees of cognitive and physical disabilities [2].

In the context described above, the case study (see Figure 2) represents the con-
cept of an in-hospital WSN that allows monitoring patients’ conditions with the help
of pulse-oximeters. The monitoring system consists of two types of nodes: a monitor-
ing station, and seven oximeter nodes, forming a star-network. Each pulse-oximeter
monitors a patient continuously and a measurement is sent to the monitoring station

4 http://www.dependability.org/
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Fig. 2 Hospital scenario considered: i) the central component represents the monitoring station, ii) a pulse-
oximeter is included in each room around the central one.

every three seconds. In case the oximeter reads a value below a threshold, an alert
message is sent to the monitoring system, and the system goes into a warning mode
in which sensor readings are sent to the monitoring station more frequently (i.e., once
every 200 milliseconds), hence facilitating continuous monitoring of patients and al-
lowing real-time responses in case of emergency conditions.

3 Overview of the Platform

In this section we provide an overview of the A4WSN platform. This research takes
advantage of MDE techniques to support an architecture-driven development and
analysis of wireless sensor networks. Figure 3 shows the main components of the
framework: the WSN modelling environment for describing the architecture of a WSN,
and the programming framework.

Fig. 3 Overview of the A4WSN platform
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The WSN modelling environment exposes three modelling languages for de-
scribing specific architectural views of a wireless sensor network: the Software Ar-
chitecture Modelling Language for WSN (SAML), the Node modelling Language
(NODEML), and the Environment Modelling Language (ENVML) (see Figure 3).

– The SAML language focuses on the application layer of the WSN. It is used to
break down the application into a set of software entities (e.g., components), to
show how they relate to each other, to better reason on their distribution through-
out the network, and to reason on the business logic of the WSN.

– The NODEML language concerns the low-level aspects underneath the applica-
tion layer of the WSN. In this context, stakeholders reason about routing proto-
cols, middleware, hardware configuration of the nodes, etc.

– The ENVML language is about the physical environment where the WSN will
be deployed. This viewpoint could be specially useful for developers and system
engineers when they have to reason about the network topology, the presence
of possible physical obstacles (e.g., walls, trees) within the network deployment
area, and so on.

The three proposed modelling languages are linked together via two auxiliary
modelling languages in order to create a combined software, nodes, and environ-
mental view of a WSN. These languages are called Mapping Modelling Language
(MAPML) and Deployment Modelling Language (DEPML), and they link together
SAML to NODEML and NODEML to ENVML, respectively (see Figure 3). More
specifically, the MAPML modelling language weaves together an SAML model and
a NODEML model. It allows designers to define a set of mapping links, each of
them weaving together components in the SAML model and node definitions in the
NODEML model. The DEPML modelling language weaves a NODEML model to an
ENVML model. A DEPML model allow designers to consider each node type defined
in the NODEML model and to instantiate it in a specific area within the physical en-
vironment defined in an ENVML model. Each node configuration in NODEML can
be instantiated n times within a specific area in ENVML with a certain distribution
strategy.

Those two auxiliary modelling languages are used for a clear separation of con-
cerns and duties while architecting the WSN (e.g., a software architect can focus on
the application layer in the SAML model only, while a system engineer may focus on
the nodes configurations in the NODEML model) and making the models reusable
across projects and organisations. The main concepts of each modelling language are
described in Section 4.

The programming framework (see Figure 3) provides a set of facilities for sup-
porting the development and integration of code generation and/or analysis engines.
In Figure 3, Ci and Ai represent code generation and analysis engines, respectively.
The proposed programming framework knows at runtime which plugins are installed
into the framework, and automatically provides the user with the available target im-
plementation languages or the available analysis techniques.

Code generation and analysis plugins are structurally similar. An analysis plu-
gin manages the analysis of WSNs (e.g., coverage, connectivity, energy consumption
analysis), instead of a code generation plugin which is tailored to the generation of
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implementation code conforming to a set of specific target languages. More specifi-
cally, in A4WSN the main difference between code generation and analysis plugins
resides in their returned output: the main output of a code generation engine can
either be a set of source files, or binary packages, whereas the main output of an anal-
ysis engine can be a violated property, a counter-example, a set of numerical values,
and so on. The detailed description of the programming framework is presented in
Section 5.

The A4WSN platform is generic since it is independent from the programming
language, hardware and network topology. Starting from a set of models (each one
reflecting a certain WSN viewpoint), the code generation and analysis components
can be plugged into the framework for generating executable code or analysing out-
comes.

4 The Modelling Environment

As shown in the previous section, the modelling environment is composed of three
main languages, which are SAML, NODEML and ENVML. Each language allows
the user to frame the problem of describing the architecture of a WSN from a specific
viewpoint [33]. It is important to point out that the modelling environment has been
realised by: (i) carefully and extensively checking the state of the art in WSN de-
velopment and modelling (see Section 7), and (ii) discussing with WSN and embed-
ded systems engineers with many iterations of changes. We formalise the structure
and concepts of all the modelling languages of A4WSN by defining their underly-
ing metamodel (see Appendix A). In the next sections each modelling language is
discussed. For the sake of brevity, we do not describe in details each element of
the A4WSN modelling languages, they are presented in a dedicated technical report
available online [38].

4.1 Software Architecture Modelling Language (SAML)

The SAML modelling language allows architects to define the software architecture
of the WSN application.

The software architecture of a WSN is defined as a collection of software com-
ponents and connections. Components interact with other components through (in-
put or output) message ports; they specify the interaction points between a compo-
nent and its external environment. Communication happens by message passing. The
actual communication method of a message (i.e., broadcast, multicast or unicast) is
specified in the send message action described later in this section. In this context, a
connection represents unidirectional communication channel between two message
ports of two different components. The data contained in a message is accessible by
specific actions and events defined in the behaviour of the involved components.

Figure 4 shows the SAML model of the WSN of the hospital scenario introduced
in Section 2.3. It is important to note that this figure is actually a screenshot of the
real A4WSN tool available at: http://a4wsn.di.univaq.it. From a structural point
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of view, the whole WSN is composed of two main components: the Oximeter com-
ponent represents the software running on each oximeter node, while the Monitor
component represents the software running on the monitoring station.

Fig. 4 Software architecture of the hospital scenario WSN

The internal state of a component is represented by the values of its application
data and its current behavioural mode. An application data can be seen as a local
variable declared in the scope of the component; application data are manipulated by
actions, events, and conditions defined in the behaviour of the component.Application
data can be either primitive (e.g., integer, boolean) or structured (e.g., enumeration,
array, map). The Oximeter of the hospital scenario stores the current percentage of
oxygen in the patient’s blood as a real number in the h application data, and the cur-
rent state of its status led in the led application data, which can be either RED or
GREEN. A mode represents a specific status of the component at the application
layer. At any given time, one and only one mode can be active in a component. The
component reacts only to those events which are defined within its currently active
mode. Each mode can contain a set of behavioural elements that represent actions,
conditions and events which together make up the control flow within the component
from an abstract point of view. Actions and events are connected via links represent-
ing the control flow among them. Optionally, a condition can be specified in a link,
meaning that the behavioural flow goes through a link only if its condition evaluates
to true.

An action represents an atomic task that can be performed by an SAML compo-
nent. It is important to describe a new kind of action introduced called scoped send
message; basically, this action tells that the set of nodes receiving the message is com-
puted at run-time, depending on the value of a boolean expression; only the nodes
whose application data values satisfy the boolean expression will receive the specific
message, thus enabling dynamic scope-based interactions within the WSN [45]. For
example, a scoped send message may be used in order to send a message to all the
nodes whose floorName application data is equal to ”ground” and whose tempera-
ture application data is greater than 21 degrees.

An event is triggered in response to either an external stimulus of the component
(e.g., the message reception on a input message port), or some internal mechanism
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of the component (e.g., a timer fired). Examples of event include: entering a specific
mode, receiving a message at a given port, an activation of a timer, the receiving of a
call from an external service, the receiving of an interrupt from either a sensor or an
actuator, etc.

By considering the Oximeter component of the hospital scenario, at startup it
turns the led into green via the turn(led.GREEN) actuate action and starts two cyclic
timers in parallel. Every time the monitorTimer is triggered (every 3000 millisec-
onds), the component sends the current value of the h application data to the Monitor
component via the update message port. When the readingTimer is triggered (i.e.,
every 200 milliseconds), the component senses the current oxygen percentage in the
patient’s blood via the senseH action: if the read value is not below or above the norm
(i.e., if it is not between 95% and 99%), then the component switches to the alarm
mode. In this specific mode, the component firstly sends the current read value to
the Monitor component via a dedicated alarm message port, then it turns the led into
red, and starts a new cyclic timer with a period of 200 milliseconds. From this point
onwards this component senses the percentage of oxygen in the blood of the patient
and sends it to Monitor every 200 milliseconds. If the read value comes back in the
acceptable range, then the component switches back to the normal mode. The Moni-
tor component is straightforward. It has a single operating mode in which every time
a message from the Oximeter component is received, its data is shown on a display
via the updateDisplay actuate action. This component temporarily stores the value
received by the various oximeter nodes in data.

4.2 Node Modelling Language (NODEML)

NODEML is a language that allows the abstraction of low-level details. More pre-
cisely, NODEML allows the definition of specific nodes that can be used to define a
WSN. Once the nodes have been defined, they can be reused across different appli-
cations. Our node abstraction is based on the work that is described in [46]. More
precisely, a node configuration can specify information such as operating system
(e.g., TinyOS, Contiki, Mantis, LiteOS), middleware (such as TeenyLIME, MiLAN,
RUNES [47]), transportProtocol (such as UDP and TCP), macProtocol (such as T-
MAC, S-MAC, WiseMAC, SIFT [16]) and routingProtocol (such as SPIN, LEACH,
GEAR [1]). From a structural perspective, in NODEML a WSN node contains one or
more energy sources (e.g., batteries), a microcontroller (i.e., the component mainly
devoted to computation and memory management), a set of sensors, a set of actu-
ators, a set of additional memories representing external storage memories of the
node, a set of radio communication devices to communicate with other nodes within
the WSN, and a set of power modes in which the node can be at any given time.

As shown in Figure 5, the NODEML model developed for our hospital scenario
is composed of two node configurations using TinyOS5 as operating system, GEAR
as routing protocol, and T-MAC as MAC protocol. The specified node configurations
are detailed below:

5 http://www.tinyos.net/
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Fig. 5 Nodes configuration of the hospital scenario WSN

– OximeterNode is equipped with an IRProbe sensor for sensing the percentage of
oxygen in the patient’s blood and a led actuator for showing the current status
of the node to the personnel of the hospital. This node is powered by two AA
batteries with up to 18720 Joules and uses a Texas Instruments ChipCon 2420 RF
transceiver. The micro-controller used is the low-power Atmel AVR ATmega128
equipped with an ADC for converting the analogue values read by the IRProbe
sensor into their corresponding digital values. The oximeter node is always active
(see the active power mode).

– MonitorStation has a single actuator device for graphically showing the values re-
ceived by various oximeter nodes on a digital display. Similar to OximeterNode,
it uses a Texas Instruments ChipCon 2420 RF transceiver and uses low-power At-
mel AVR ATmega128 micro-controller. The monitoring station is always active
(see the active power mode) and is powered by a classical electrical plug con-
nected to the main electrical system of the hospital. Finally, it is equipped with
an additional storage memory for storing a log of all the values received by the
oximeter nodes over time.
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4.3 Environment Modelling Language (ENVML)

The ENVML modelling language allows the designers to specify the physical envi-
ronment in which the WSN nodes are deployed.

The Environment represents the overall area in the 2D space in which the WSN
nodes are deployed. In ENVML an image can be associated to the specified environ-
ment, allowing environment designers to provide a more detailed view of the environ-
ment by means of external CAD software; in this case the proposed ENVML models
can be seen a projection of these models which focusses on obstacles and inner areas
only. Any kind of relevant obstacle can be placed in the environment. Each obstacle
is characterized by the name of the material it is made of (e.g., concrete wall, wooden
door, glass, etc.), and its attenuation coefficient. The shape of the obstacle is given
by its shell: a sequence of coordinates representing the perimeter of the obstacle in
the 2D space.

Figure 6 shows the ENVML model representing the physical environment of our
hospital scenario. It is a rectangle with 16 and 13 meters of width and height, re-
spectively and it contains three kinds of obstacles that are concrete walls dividing the
whole environment into rooms and corridors, a main wooden door on the left, and a
glass door for each patients room. Each obstacle is represented by a unique name, its
attenuation coefficient and the coordinates of all the points of its perimeter.

Fig. 6 Physical environment of the hospital scenario WSN

In ENVML an area identifies a portion of physical environment in which nodes
of the same type can be distributed according to a distribution policy (defined in the
DEPML modelling language, see Section 4.5). Similar to obstacles, the perimeter of
the area is defined by means of its shell.

The physical environment of the hospital scenario contains two main deployment
areas:

– BSArea is a square area at the center of the environment and will contain the
central monitoring station.
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– OximetersArea its perimeter is the same as the whole physical environment and
will contain all the oximeter nodes, one for each patients’ room.

It is important to note that the above mentioned solution is one of the possible
deployment configurations; another solution could also consist in the creation of a
single area for each oximeter, where each oximeter could be placed in the centre of
the area. The aforementioned solutions share the same network topology.

4.4 Mapping Modelling Language (MAPML)

MAPML is the language for assigning software components to the corresponding
hardware node configuration they will be executed on. A MAPML model seman-
tically represents the classical notion of deployment of software components onto
hardware resources [10]. The presence of an intermediate MAPML model between
an SAML and a NODEML models helps in clearly separating the application layer
from the lower levels of a WSN. So, architects can focus on the application from a
functional point of view in SAML, while other engineers can focus on low-level as-
pects of the WSN in NODEML. This aspect is new in the Wireless Sensor Networks
research area.

A MAPML model is made of a set of node mappings, each of them linking a
node definition from the NODEML model and a component from the SAML model.
The semantics of a node mapping is that the linked component in the SAML model
will be physically deployed on the linked node in the NODEML model. A node map-
ping can contain a set of secondary links, each of them can be seen as a refinement
of the node mapping. Secondary links are:

– Sensor mapping: it maps either a sense action or a sensor interrupt event in an
SAML component to a sensor device in a NODEML node configuration. Funda-
mentally, this kind of link allows designers to specify to which physical sensor
device does either a sense action or a sensor interrupt event refer to.

– actuator mapping: it maps either an actuate action or an actuator interrupt event
in an SAML component to an actuator device in a NODEML node configuration.
Conceptually, it is similar to sensor mapping, but it refers to actuators, rather than
sensors.

– Communication device mapping: it maps an SAML message port of the com-
ponent linked by the parent node mapping to a NODEML radio transceiver in
the node configuration linked by the parent node mapping. It allows designers to
physically map a software port to its corresponding physical radio transceiver.

– mode mapping: it maps an energy mode defined in an SAML component to
its corresponding power mode in the linked NODEML node configuration. It al-
lows designers to decouple the two concepts of mode we have in SAML and
NODEML, and thus it opens for a more flexible definition of modes in the pure
“software world”, independently from the power modes that the WSN node has
in the “physical world”.

For what concerns our hospital scenario, the MAPML model (which links the
SAML and NODEML model of Figure 4 and Figure 5) has the following form:
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– NodeMapping oximeter links the Oximeter component to the OximeterNode node;
– ModeMapping active links both the normal and alarm modes of the Oximeter

component to the active power mode of the OximeterNode node. It is impor-
tant to note that operating modes defined in SAML are pure logical modes,
whereas power modes defined in NODEML actually depend on the hardware
configuration of the node itself.

– SensorMapping irProbe links both the SenseH(h) and SenseH2(h) SAML
sense actions to the hardware IRProbe sensor in the NODEML model.

– ActuatorMapping led, which is similar to SensorMapping irProbe, links both
the turn(led.GREEN) and turn(led.RED) SAML actions to the hardware led
actuator in the NODEML model.

– CommunicationDeviceMapping 2420 links the update and alarm SAML mes-
sage ports to the ChipCon2420 RF transceiver defined in the NODEML model.

– NodeMapping monitor links the Monitor component to the MonitorStation node;
– ModeMapping active links the normal mode of the Monitor component to the

active power mode of the MonitorStation node.
– ActuatorMapping display links the updateDisplay(data) actuate SAML ac-

tion to the hardware display actuator in the NODEML model.
– CommunicationDeviceMapping 2420 links the update and alarm SAML mes-

sage ports of the Monitor component to the ChipCon2420 RF transceiver de-
fined in the NODEML model.

With such a configuration, we have a clear view of how various elements defined
at the software architecture level interact with the hardware. For example, all the
communication between the Oximeter and Monitor SAML components happen be-
tween different WSN nodes, whereas all the other actions defined in the control flow
are executed locally to the component containing them. Also, the MAPML model
establishes which hardware sensor and actuator equipments are actually used for per-
forming the abstract sense and actuate actions defined in the SAML model. This level
of flexibility is exactly the main goal of the A4WSN modelling approach.

The editor developed for the MAPML language is composed of three panels: left,
centre and right. The left and right panels show the woven SAML and NODEML
models, respectively, while the central panel represents various mappings of the MAPML
model as a hierarchical tree. This solution allows us to provide a very clear and con-
cise graphical editor for the MAPML model, which in some cases may have a very
large number of interrelated mappings. Furthermore, we are aware that manually cre-
ating this large number of mappings can be a tedious and error-prone task for engi-
neers; in this context, we are implementing a set of model-to-model transformations
which are able to take as input an SAML model and a NODEML model, and then
they are able to semi-automatically generate an initial MAPML model linking them;
this operation is guided by matching strategies (e.g., name similarity via edit dis-
tance, structural similarity, etc.). In the MDE research field this practice is called
model matching [15].
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4.5 Deployment Modelling Language (DEPML)

DEPML is our language for virtually deploying WSN nodes into the physical envi-
ronment. DEPML allows designers to consider each node configuration defined in a
NODEML model and to instantiate it in a specific area within the physical environ-
ment defined in a ENVML model. A DEPML model contains a single type of link
called deployment link, which links together a node configuration in NODEML and
an area in ENVML. The semantics of the deployment link is that the linked node
configuration is instantiated and virtually deployed in the linked area multiple times.
This allow designers to focus on generic components and node types in SAML and
NODEML, while in DEPML they can reason on the final deployment of the WSN.
The number of nodes that are instantiated in the area is specified in the numberOfN-
odes attribute. Within a certain area each node configuration can be distributed in
three different ways:

– random, each node is placed randomly within the area;
– grid, nodes are placed on a grid with a certain number of rows and columns;
– custom, each node is manually placed within the area. In this case, each deployed

node is represented by its name (which must be unique within the area) and the
coordinates of its position.

Also, nodes name patterns can be used by designers for declaring the textual
pattern of the names of the nodes distributed within the area. They are used as a way
to refer to the names used as targets of send message actions in SAML models.

For what concerns our hospital scenario, the DEPML model contains the follow-
ing elements:

– DeploymentLink oximeter links the OximeterNode NODEML node to the Oxime-
tersArea ENVML area. Since we want to specify that exactly one oximeter node
must be deployed in each patient’s room, we define a custom nodes distribution.
Thus, we manually define the exact position of the deployed nodes by means of
ten deployed node elements, each of them containing the coordinates of its posi-
tion in the environment.

– DeploymentLink monitorStation links the MonitorStation NODEML node to the
BSArea ENVML area. In this case we specify that the number of deployed nodes
is only one, with a random distribution within the area (we can do this because
the area is a square with a side of 0.5 meters, which is exactly the size of the
monitoring station node).

The presented DEPML models unveil the flexibility we achieved with the A4WSN
approach. Indeed, if the hospital WSN application must be applied in a different hos-
pital, the SAML, NODEML, and MAPML models can be reused as they are. The
only models that must be adapted are: (i) the ENVML model for representing the
new physical environment with its obstacles and (ii) the DEPML model for link-
ing the original NODEML nodes to the new areas, possibly with different values for
specifying the number of deployed nodes (e.g., twenty oximeter nodes instead of ten).
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The DEPML modelling editor is analogous to the MAPML one: it is composed
of three panels providing a tree-based representation of the NODEML, SAML and
deployment links of DEPML, respectively.

4.6 Models correctness and Feasibility

All the proposed languages have been designed to provide a good trade-off between
genericity, expressivity and accuracy in capturing the various facets of the WSN do-
main. To this respect, it is fundamental to allow designers to check whether their
models are correct with respect to the semantics of the proposed languages. A4WSN
provides two different mechanisms for checking the correctness of the developed
models, namely: model conformance and a set of OCL constraints.

4.6.1 Conformance to metamodels

A4WSN allows designers to check whether a model adheres to the structural seman-
tics of its corresponding language (e.g., SAML). A4WSN supports this feature by
leveraging the well-known notion of conformance in Model-Driven Engineering; in
other words, in A4WSN a model m adheres to the structural semantics of its corre-
sponding language (e.g., SAML) if and only if m actually conforms to its metamodel
(e.g., the SAML metamodel introduced in Section 4.1).

For example, if we refer to the SAML metamodel in Appendix A, we can see that
the StructuredDataDeclaration metaclass has a type relationship to the Expression
metaclass with multiplicity 1; this means that in every SAML model each declaration
of a structured data must have one and only one type, defined as an expression. If
an SAML model violates this constraint, then it is marked as invalid by A4WSN and
the architect knows that this issue must be corrected. Also, if we consider the value
relationship between the DataDeclaration and the Expression metaclasses, we can
notice that its multiplicity is 0..1, meaning that in SAML models such a reference is
optional, giving designers the freedom to either set a value to a data declaration (as
an SAML expression) or not.

4.6.2 OCL constraints

In order to ensure a more precise semantics of the languages described in Section 4,
we complemented them with a set of OCL6 constraints. OCL is based on first-order
predicate logic and it is a language to describe expressions and constraints predicating
on models in an object-oriented fashion.

In A4WSN we use OCL constraints for predicating on the correctness and feasi-
bility of the designed models. For example, the OCL constraint shown in Listing 1
is defined in the context of an SAML connection between components (line 1) and
ensures that in SAML models each instance of Connection links together ports be-
longing to different components (line 3); when the constraint is violated the architect

6 Object Constraint Language (OCL) specification: http://www.omg.org/spec/OCL/2.3.1
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is informed about it via a dedicated error message (line 4). The A4WSN platform
contains fourteen OCL constraints predicating on the various modelling languages
of the platform. For example, another constraint in DEPML ensures that the coordi-
nates of each manually positioned node must be within the boundaries of the area it is
deployed in, and so on. For the sake of readability the description of such constraints
are not discussed extensively in this article.

1 c o n t e x t C o n n e c t i o n {
2 c o n s t r a i n t sameComponentConnect ion {
3 check : ( s e l f . s o u r c e . e C o n t a i n e r ( ) = s e l f . t a r g e t . e C o n t a i n e r ( ) )
4 message : ’ Source and t a r g e t p o r t s o f t h e ’ + s e l f . s o u r c e . name + ’−

’ + s e l f . t a r g e t . name + ’ c o n n e c t i o n c a n n o t be lon g t o t h e same
component ’

5 }
6 }

Listing 1 Example of OCL constraint checking if an SAML connection links ports belonging to the same
component

It is important to stress that our set of OCL constraints are defined in the context
of all the A4WSN modelling languages. When considering the A4WSN auxiliary
languages (i.e., MAPML and DEPML), our OCL constraints help architects and de-
signers in actually evaluating the feasibility of either the software-hardware mapping
(when considering MAPML models) or the virtual deployment of the nodes in the en-
vironment (when considering ENVML models). These OCL constraints are specially
important since their checks crosscut multiple models conforming to different mod-
elling languages; this is a non-trivial situation, where a manual analysis to identify
and fix their violations could be very challenging for architects and designers. List-
ing 2 shows two OCL constraints performing two of those non-trivial cross-model
checks.

1 c o n t e x t Sense{
2 c o n s t r a i n t senseAct ionNotMapped {
3 check {
4 / / mapModel i s a r e f e r e n c e t o a MAPML model
5 f o r (m i n mapModel . mappings . s e l e c t ( e | e . e C l a s s ( ) . name= ’

SensorMapping ’ ) {
6 /∗ r e s o l v e L i n k E n d ( ) i s a custom o p e r a t i o n f o r o b t a i n i n g a
7 model e l e m e n t from a l i n k end r e f e r r i n g t o i t ∗ /
8 i f (m. s e n s e A c t i o n . r e s o l v e L i n k E n d ( ) = s e l f ) {
9 r e t u r n t r u e ;

10 }
11 }
12 r e t u r n f a l s e ;
13 }
14 message : ’ The ’ + s e l f . name + ’ SAML s e n s e a c t i o n i s n o t mapped t o

any NODEML s e n s o r ’
15 }
16 }
17

18 c o n t e x t SensorMapping{
19 c o n s t r a i n t sameComponentDi f fe ren tNode {
20 check{
21 v a r component = s e l f . getComponent ( ) ;
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22 v a r node = s e l f . getNode ( )
23 r e t u r n n o t SensorMapping . a l l I n s t a n c e s . e x i s t s ( p | ( p . getComponent

( ) = s e l f . getComponent ( ) ) and ( p . getNode ( ) <> s e l f . getNode ( ) ) )
24 }
25 message : ’Two SAML s e n s e a c t i o n s b e l o n g i n g t o t h e ’ + s e l f .

getComponent ( ) + ’ component a r e mapped t o two d i f f e r e n t NODEML
nodes ’

26 }
27 }
28

29 / / r e t u r n s t h e SAML component c o n t a i n i n g t h e mapped s e n s e a c t i o n
30 o p e r a t i o n SensorMapping getComponent ( ) : Component {
31 r e t u r n s e l f . s e n s e A c t i o n . r e s o l v e L i n k E n d ( ) . e C o n t a i n e r ( ) . e C o n t a i n e r ( ) ;
32 }
33

34 / / r e t u r n s t h e NODEML node c o n t a i n i n g t h e mapped s e n s o r
35 o p e r a t i o n SensorMapping getNode ( ) : Node {
36 r e t u r n s e l f . s e n s o r . r e s o l v e L i n k E n d ( ) . e C o n t a i n e r ( ) ;
37 }

Listing 2 Examples of OCL contraints checking inter-model conditions between SAML and NODEML
models

The senseActionNotMapped constraint is defined in the context of SAML sense
actions (line 2) and checks among all MAPML sensor mappings (line 5) if there is
one involving the current sense action (lines 8-12); an error message is shown to the
architect if the current SAML sense action is not mapped to any NODEML sensor
(line 14). Another non-trivial constraint is shown in lines 18-27 of Listing 2. This
constraint is defined in the context of MAPML sensor mappings (line 18) and checks
if there are SAML sense actions belonging to the same components, but at the same
time they are mapped to more than one NODEML node (lines 21-24); this situation is
erroneous in A4WSN because we assume that every SAML component is an atomic
unit of deployment, i.e., an SAML component cannot be deployed to more than one
NODEML node at the same time. As shown in lines 29-37, the OCL engine we use
in the current implementation of A4WSN allows us to abstract complex operations
on the models as auxiliary operations (see Appendix A for more detail). For example,
the getComponent() operation is defined in the context of a MAPML sensor mapping,
it identifies the linked SAML sense action (via another resolveLinkEnd() operation),
and returns the SAML component containing the sense action by navigating upwards
twice in the containment hierarchy of the SAML model. The getNode() operation
performs a similar logic by identifying the NODEML node containing a NODEML
sensor mapped by a specific MAPML sensor mapping.

If the need for more strict semantics of the proposed languages arises (for in-
stance in order to define WSN applications with specific styles or special configura-
tions), additional OCL constraints can be added to every element of the languages by
extending the A4WSN platform with a suitable plugin. Please, refer to Section 5 for
more details on this feature of the A4WSN platform.
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4.7 Discussion

This section has presented a 3+2 modelling framework, that, by using three main
modelling languages and two auxiliary ones supports the specification and analysis
of WSNs. While a comparison with related work is provided in Section 7, the aim
of this section is to briefly discuss why a new set of Domain-Specific Modelling
Languages (DSMLs) is presented, instead of extending existing ones.

According to [44] “Domain-specific languages (DSLs) are languages tailored
to a specific application domain. They offer substantial gains in expressiveness and
ease of use compared with general-purpose programming languages in their domain
of application”. While DSL and DSML are not synonyms of the same concept [9,
53], a number of advantages pointed in [44] still apply to DSML:

– domain-specific constructs defined for the domain of interest (WSN, in our spe-
cific case) are far more fine grained and specific of user-definable operators of
existing modelling languages. More specifically, we could have expressed the
SAML by profiling UML State Machines. However, this would have implied to
force SAML to strictly follow the semantics of UML state machines and to intro-
duce a number of other concepts by specialising UML constructs. Furthermore,
the definition of the ENVML model would have required an under-specification
of the 2D space.

– The use of DSMLs offers possibilities for analysis, verification and transforma-
tion that are far beyond what is supported by general-purpose languages. In our
specific case, through the definition (and with an option to extend) the A4WSN
modelling languages, we can run a multitude of domain-specific predictive anal-
ysis techniques (such as the PlaceLife plugin we developed to estimate the WSN
lifetime - see Section 6).

– overall, DSMLs offer gains in reuse and maintenance. Accordingly, the A4WSN
SAML, NODEML, and MAPML models are re-usable in different applications
and applications domains.

When designing the modelling languages of A4WSN we aimed at representing
the domain of WSNs in order to cover its most representative concepts and enti-
ties. We identified the set of concepts of the A4WSN modelling languages by work-
ing closely with industry partners and continuously performing informal interviews
with engineers, developers, researchers and other involved stakeholders within WSN-
based projects. So, it is important to stress the fact that with the proposed modelling
languages we do not aim at addressing all the possible concerns in all possible situ-
ations about WSNs (e.g., dependability, sensing coverage, networking and commu-
nication, performance), specially because of the intrinsic multidisciplinary nature of
the WSN problem space. Also, as already discussed in the literature about architec-
ture description languages [43,41,17], having a comprehensive modelling language
containing all the possible concepts related to a given domain may be unfeasible, or
at least may lead to large and complex languages, which may be cognitively difficult
to manage and maintain. The A4WSN platform targets the following concerns in the
domain of WSN engineering: (i) separation of concerns, addressed via the multi-view
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modeling paradigm adopted in the modeling framework, (ii) reuse, addressed via the
(independent) sharing of architecture, nodes, and environment models across projects
and organizations, and (iii) model-based analysis, addressed via the A4WSN plugins
system and its programming framework.

It is also important to note that the A4WSN modelling languages can be easily ex-
tended by means of generic and language-independent composition engines proposed
in the literature. For example, in [17] we proposed a language composition engine
that allows to extend architectural languages with domain-specific concerns, with
new architectural views, with analysis constructs or with methodology and process
concepts, depending on the system’s stakeholder concerns. In this case, the needed
additional concepts may live in dedicated plugins of the A4WSN platform, and can
be used by the WSN engineers when needed.

5 The Programming Framework

As introduced in the beginning of Section 3, the A4WSN platform is composed of
two main parts that are a modelling environment to allow architects to model WSN
applications and a programming framework devoted to code generation and analy-
sis of WSN application models. The motivation for performing code generation and
analysis of WSN application models are well understood both in academia and in
practice [55,36]. Basically, code generation helps in reducing the cost of developing
a WSN application since the developers can automatically obtain an executable ap-
plication from the model by applying some specific transformations. Also, perform-
ing analysis is fundamental while developing a WSN application due to the intrinsic
complexity of the WSN domain. For example, if we consider typical aspects in WSN
development such as nodes connectivity, real-time communication, energy consump-
tion, performance, security, etc., it is extremely difficult and demands a lot of effort
to ensure that a developed WSN is correct with respect to those aspects. Moreover,
analysis engines can also be used to reason on the WSN configuration in order to
find reasonable trade-offs in terms of network topology, employed protocols, etc. for
a specific task.

In this section we present the generic and extensible programming framework
of A4WSN. It is tailored to support the development of code generation and analy-
sis engines against WSN application models conforming to the modelling languages
described in Section 4.

Our programming framework offers a generic workbench and a set of extension
points for supporting the development and integration of third-party code genera-
tion and analysis engines. More specifically, through its components, it enables the
storage of WSN models, supports the merging of linked models, validates A4WSN
models, provides error/warning/information messages to the user, defines a UI man-
ager to make plugins interacting, provides facilities for managing code generation
and analysis engines.

Third-party engines are realised as plugins extending the A4WSN generic work-
bench. It knows at run-time which plugins are available and automatically provides
to the user the available target implementation languages and analysis techniques.
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Fig. 7 The A4WSN programming framework

Figure 7 shows an overview of the A4WSN programming framework. All the
boxes within the programming framework represent the various components of the
generic programming workbench, whereas the C1..Cn and A1..An boxes represent
third-party code generation and analysis plugins, respectively. Third-party plugins
extend the Code Generation Manager and Analysis Manager components which pro-
vide the needed extension points and they communicate with all the other components
of the programming framework (for the sake of clarity we do not show those connec-
tors in the figure). In the following we will briefly introduce the facilities and duties
of the various components. A detailed description of each component is presented
in Appendix B, while the overview of their implementation details is provided in
Appendix C.

– Models: it is a repository that stores all the WSN models developed by architects
and designers;

– Model Adapter: it abstracts the nature of the models repository to the other com-
ponents of the A4WSN programming framework, so to avoid interoperability is-
sues;

– Validation: it executes validation operations, such as model to metamodel confor-
mance, and OCL constrains satisfaction;

– Messages Manager: it graphically shows three kind of informative messages to
users, which are error, warning and information;

– UI Manager: it provides the facilities to interact with the user interface of the
A4WSN platform;

– Parameter Provider: it manages the additional parameters required by a code gen-
eration or analysis plugin;

– Code Generation Manager: it provides the services required to manage code gen-
eration engines, such as extension checks, list of plugins, plugins load, validation
triggering;
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– Analysis Manager: it is analogous to the Code Generation Manager, but designed
for analysis plugins;

– Extension Points: it provides services and rules to connect other components to
the A4WSN framework.

6 PlaceLife: an A4WSN plug-in

In order to validate the expressivity of the A4WSN modelling languages and to exer-
cise the provided extension points, we developed an analysis plug-in called PlaceLife.
PlaceLife takes advantage of the three modelling views (namely, SAML, NODEML
and ENVML) in order to provide an estimate of the WSN lifetime. All modelling
views are analysed, combined and translated into low level simulation scripts that
can be executed to estimate the WSN lifetime. This translation has been useful to
verify that our models have an appropriate level of detail for simulation purposes. In
order to produce a realistic simulation the following is desirable:

– abstraction: the models abstract all the details needed to generate scripts that can
run in various well-accepted simulators such as Opnet and OMNET++;

– fine-grain simulation: the details should allow fine-grain simulations that com-
bine different information such as physical environment, hardware and various
layers of OSI.

We verify abstraction by considering all OSI layers and for each layer the infor-
mation required by well-established simulation tools. We show that in most of the
cases A4WSN models abstract the information but missing ones can be easily added
via a specific plug-in. More precisely we keep the core modelling languages (i.e.,
SAML, NODEML, ENVML) as clean and minimal as possible, without polluting
them with analysis- or code generation-specific constructs; at the same time engi-
neers can add their own analysis-specific models and concepts via dedicated plugins
in order to streamline the analyses that they need to perform. For instance in the
healthcare case study A4WSN models the application behaviour (e.g., sampling rate
and event notification policy) while PlaceLife can provide input models to Castalia.
This is shown from Section 6.1 to Section 6.3.

Fine-grain simulations are easily obtained thanks to the reuse and the weaving of
multiple models into a single one. Models such as NODEML or ENVML that contain
low level information (e.g., hardware and path loss) can be created once and reused
multiple times with different application models. This has been validated in Section
6.6 by means of a home automation application. Technical details such as the effects
of the path loss and the hardware which require theories of telecommunication are
specified in pre built PlaceLife models. Technical details are complemented with the
application model (i.e, SAML) and the physical environment (i.e., ENVML). These
models are transformed into various complex simulation scripts. In Section 6.5 we
describe the PlaceLife implementation and the simulation tool used as a target lan-
guage for simulation script generation (that is, Castalia). In section 6.6 we compare
the simulation results obtained with a basic Castalia simulation with a PlaceLife sim-
ulation based on pre-built hardware and path loss models, applied to the fire alarm
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and automatic heating application. Numerical results are also presented to show the
effects of realistic simulation scenario, where environmental factors are taken into
account. The former has the default ideal free space model for the path loss while
the latter considers pre-built PlaceLife models that consider the real environment that
is made of physical objects. We see that not considering the real environment may
cause overestimation of the lifetime which is particularly undesirable.

6.1 Application layer

Information at application layer should include the structure and behaviour of the
WSN. For instance this includes type of components, number of instances and their
interaction. This information is useful to derive relevant data such as the sensing rate,
messages sent over the network and the type of communication (broadcast, multi-
cast and point-to point). This data clearly affects the energy consumption. Beside the
structure and the behaviour of the WSN, useful application layer information can be
the used aggregation protocol7 [31,56] (if any), the type of operating system, the type
of middleware (if any) and so on.

The modelling languages of A4WSN provide ways to define all the aforemen-
tioned application layer information. The SAML view contains structure and be-
haviour of the WSN application. For instance this includes the type of components,
their interaction, the sensing and transmission activities of a node and the type of
transmission. This information is complemented by the NODEML view that speci-
fies, among the other information, the type of operating system and the middleware
used. In PlaceLife we use the ENVML and DEPML models in order to have data
about the number of nodes within the WSN and their deployment position in the en-
vironment. Application layer information is translated into low level scripts. More
precisely, structure and behaviour are translated into simulation scripts. These scripts
are combined with components from the simulation library (such as sensing compo-
nents and middleware) in order to obtain the entire application layer configuration
of the simulation. While PlaceLife provides the implementation of some libraries,
unimplemented ones such as unknown sensors or unsupported middleware need to
be specified by the user.

6.2 Networking and data link layers

Information at networking layer should specify the routing protocol. While routing
can be performed by using a multi-hop solution, clustering approaches are very effec-
tive in order to improve the energy efficiency of the WSNs. This is why the NODEML
can specify either multi-hop routing protocols (e.g., AODV) or some clustering ap-
proach (e.g., LEACH). A static routing can also be defined by explicitly specifying
the connection among nodes. Routing that are not supported by A4WSN must be
implemented by using some simulation script language.

7 Aggregation and fusion aims at removing redundant data and transmitting concise information.
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Information at data link layer should include the medium access method (MAC)
that is used. Access methods can be summarised into two main categories: con-
tention based method (e.g., CSMA/CA) and channel partitioning (e.g., TDMA). The
NODEML includes a wide range of possibilities for the MAC protocol selection. This
includes CSMA, T-MAC and S-MAC [74,13].

6.3 Physical layer and hardware

Physical layer information should support the definition of an energy consumption
model for realistic estimate of the WSN lifetime. An advanced energy consumption
model should consider the path loss, the modulation scheme, the hardware that is
used, the coding scheme and so on. While the modulation scheme, the hardware and
the coding scheme are specified in the NODEML model, the path loss, as we show
in the next section, has been defined according to the environment and its obstacles.
NODEML, ENVML and path loss definitions are used to generate low level settings
and scripts that can provide a fine estimate of the energy required to transmit a bit
over the physical channel.

6.3.1 The path loss

In sensor networks, path loss can play a crucial role since neglecting the path loss
may cause overestimation of WSN lifetime. The optimistic evaluation of resources
is particularly dangerous for WSNs since the resources come with significant restric-
tions especially in terms of energy. The path loss is reduction in transmitted signal
strength as a function of distance, which determines how far apart two sensor devices
can be and have reliable communication between the devices [52]. The core of signal
coverage calculations for any environment is a path loss model, which relates the loss
of signal strength to the distance between two terminals and the operating frequency.

Indoor radio propagation is dominated by the same mechanisms as outdoor prop-
agation: reflection, scattering, diffraction, refraction, absorption and depolarization.
However, conditions are much more variable. The indoor environment differs widely
due to the increased number of obstacles, layout of rooms, presence of multiple walls
and floors, windows and open spaces. Altogether these factors have a significant im-
pact on path loss in an indoor environment. Due to the irregularity in the position of
obstacles and layout of the rooms, the channel varies significantly with the environ-
ment making the indoor propagation modelling relatively inconsistent and challeng-
ing especially for modelling. The propagation and path loss models are usually based
on empirical studies on the system considered.

Accurate modeling of the actual environment is very complex as the communica-
tion systems operate in complex propagation environments. In practice, most of the
simulation studies make use of the empirical models that have been developed based
on empirical measurements over a given distance in a given operational frequency
range and a particular environment [57]. Some of the most common empirical mod-
els include Okumura Model, Hata Model, COST 231-Walfish-Ikegami Model, Erceg
Model, ITU Indoor Path Loss Model, Log-Distance Path Loss Model etc [57,64].
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Table 1 Partition dependent losses for 2.4 Ghz

Attenuating Material Signal attenuation in dB
Wood 2
Metal frame, glass wall into building 6
Office wall 6
Metal door in office wall 6
Cinder wall 4
Metal door in brick wall 12.4
Brick wall next to metal door 3

When considering an indoor propagation environment for path loss, the material used
for walls and floors, the layout of rooms, windows and open areas, location and ma-
terials obstructing etc. should be taken into account, as all of these factors have a
substantial impact on the path loss in an indoor environment. The complexity of sig-
nal propagation in the indoor environment makes it difficult to obtain a single model
that illustrates path loss across a wide range of environments. The following is a
commonly used simplified model for path loss as a function of distance [24].

Pr (dBm) = Pt (dBm) +K(dB)− 10γ log10

(
d

d0

)
(1)

where Pr is the received signal strength and Pt is the transmitted signal strength;
K is the path loss factor (it depends on antenna characteristics and the average chan-
nel attenuation), γ is the path loss exponent, d0 is the reference distance for the an-
tenna far field, and is typically assumed to be 1-10m for indoor scenarios and 10-
100m for outdoor scenarios. The path loss factor K can be calculated as:

K (dB) = 20 log10
λ

4πd0
(2)

The value of λ depends on the propagation environment. This path loss model,
together with the ENVML physical environmental model, is used to define the path
loss between any two nodes. Please note that existing simulation packages, and mod-
elling architectures do not consider the effects of path loss to best of our knowledge.
We fix the value of γ at 2 for free space and introduce the losses for each partition
(obstacle) that is encountered by a straight line connecting the receiver and the trans-
mitter. Please refer to Table 1 for the decibel loss values measured for different type
of partitions, at 2.4 GHz [52]. In order to add the effects of obstacles between the
transmitter and the receiver, we add the fixed path losses per existing obstacles to the
free space path loss.

There is no doubt that the physical layer has a fundamental role when energy
consumption is considered. Researchers are currently investigating various modula-
tions and coding techniques. Choosing a model for energy consumption can also be
complicated. Different studies and simulation tools [27] [7] [70] consider different
models for energy consumption.
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6.4 Analytical model

In this section the analytical framework for calculation of the lifetime of nodes is pre-
sented. The analytical model presented is in turn used to verify the simulation results.
The analytical framework consider the characteristics of the transmission process
which affects the lifetime of a node. Without loss of generality, the lifetime L of a
node n can be expressed as:

Ln =
Etot

Epr ×Rr + Ept ×Rt
(3)

whereLnode is the lifetime of the nodes,Etot is the total energy in joules available
for the node considered (e.g. initial energy for two AA battery is 18720 joules), Epr
and Ept are the energy spent to receive and transmit a single packet, and Rr and Rt
are the average number of packets received and sent per second respectively.

For the analytical framework introduced in this paper the energy consumption
model described in[7] is combined with the effective number of transmissions in-
cluding the retransmissions caused by obstacles. This model is selected since it in-
cludes various factors such as distance, attenuation due to obstacles, modulation, and
hardware. The energy consumption of a node n is affected by the following three
terms:

– Ect: the transmitter circuit energy;
– Ecr: the receiver circuit energy;
– Et: the transmission energy.

The calculation of the transmission energy Et is based on the following expres-
sion:

Et =
L×M ×Nf ×N0

γ ×G
× fτ,=(B) (4)

where L is the path-loss (see [35] for details), M is the link safety margin, Nf
is the receiver noise figure, N0 is the ambient noise power spectral density, γ is the
power amplifier efficiency, G is the combined gain of the transmit and receive anten-
nas, fτ,=(B) is the required signal-to-noise ratio per bit corresponding to transmis-
sion technique τ , fading characteristics = and target bit error rate B.

The energy spent for receiving a packet can be calculated as follows:

Epr = Ecr × s (5)

where s is the packet size.

6.5 PlaceLife implementation

PlaceLife generates Castalia and OMNET++ [50] simulation scripts. Castalia is a
WSN simulator based on the OMNeT++ platform. It is mainly used for initial testing
of protocols and/or algorithms with a realistic node behaviour, wireless channel and
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radio models. The OMNeT++ platform is an extensible, modular, component-based
C++ simulation library and framework, primarily for building network simulators.

Castalia is used in order to simulate the radio channel, the MAC protocol and
the network protocol. The application behaviour is needed to derive application level
simulation parameters. The environment and the path loss models allow the calcu-
lation of the path loss. In fact, while Castalia assumes that the user provides path
loss related parameters in a complex path loss matrix, PlaceLife presents an abstract
view of the environment where the path loss is derived based on the characteristics of
the environment specified in the ENVML model. OMNET++ is used for additional
simulation components such as the sensing devices and the middleware library.

6.6 PlaceLife applied to the home automation system: Numerical Results and
Discussions

In order to show the effectiveness of the architectural approach and the PlaceLife
plugin, in this section (i) we consider a case study about a home automation system,
and (ii) we present numerical results of its simulation. The numerical results also
show the effects of realistic simulation scenarios, where environmental factors are
taken into account.

Monitoring and automatic control of building environment is a case study con-
sidered quite often [26], [22]. Home automation can include the following function-
alities: (i) heating, ventilation, and air conditioning (HVAC) systems; (ii) emergency
control systems (fire alarms); (iii) centralised lighting control; and (iv) other systems,
to provide comfort, energy efficiency and security. In order to validate our approach
we consider the fire alarm system and the automatic heating application. A CC2420
chip, compatible with 802.15.4, is used to provide wireless communication, operat-
ing at 2.4 GHz and providing a maximum data rate of 250 kbps. The transmission
output power with which the radio transmits the packets is 0dBm. It employs Di-
rect Sequence Spread Spectrum (DSSS) modulation in combination with Offset -
Quadrature Phase Shift Keying (O-QPSK) modulation. Each node is powered by two
AA batteries with up to 18720 Joules and uses a Texas Instruments ChipCon 2420
RF transceiver. Low-power Atmel AVR ATmega128 equipped with an ADC is used

Table 2 Selected values

link safety margin M=10
receiver noise figure Nf=5
ambient noise power N0 = −204dBJ

spectral density
power amplifier efficiency γ=0.35

combined gain of the transmit G = 1
and receive antennas

required signal-to-noise ratio
per bit τ=transmission technique fτ,=(B) = 15dB
== fading characteristics and

B=target bit error rate
circuitry Ect = Ecr = 1µJ
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as the micro controller. The fire alarm system is composed of temperature sensors,
smoke detectors and sprinkler actuators. In our fire alarm implementation we assume
that all the temperature sensors monitor the temperature at regular intervals ∆t1.
When a temperature sensor reads a value that exceeds a specified threshold T and a
smoke sensor detects smoke all the sprinklers are activated. The value ∆t1 and the
threshold T are assumed to be 30 seconds and 50 celsius degree, respectively.

The automatic heating application is composed of different temperature sensors, a
base station, and various heaters. In our automatic heating application the temperature
sensors send readings at regular intervals ∆t2 to the base station directly (no routing
protocol is employed as the sensors communicate directly to the base station). This
is placed at the center forming a star topology. The base station averages the readings
and decides whether or not the central heating system should be on. More specifically
the base station works in the following way:

– if the heating is turned on and the average temperature is greater than the maxi-
mum temperature Tmax, the central heating system turns off.

– if the average temperature is less than the minimum temperature Tmin, the central
heating system turns on.

The value ∆t2 is set to be 30 seconds while Tmin = Tmax = 22 Celsius degree.
We assume the fire alarm system and the automatic heating application are deployed
in a building composed of three floors. Each floor has the same floor plan that is
shown in Figure 8. It is important to note that base stations interference is negligible
since base stations have no energy limitations and they do not use different channels.

Figure 8 represents the floor plan of an apartment, containing the temperature and
smoke detector nodes. For the sake of representation, we use numbers to represent
sensor nodes monitoring temperature and smoke, and we do not present the various
models representing the WSN, rather we directly describe the main results of the
execution of the automatically generated simulation scripts. Nodes 1, 2 represent the
temperature and smoke detector nodes respectively in the bathroom area. Nodes 3,4
respectively represent the temperature and smoke detector nodes in the pantry. Nodes
5, 6 represent the temperature and smoke detector nodes respectively in the kitchen,
nodes 7,8 represent temperature and smoke detectors respectively in the storage area
while nodes 9, 10 represent the nodes from the outer hallway and stairs to the lobby.
All these temperature nodes in these areas sense and send to the base station located
close to the pantry.

In the larger bedroom, nodes 11, 12 represent the temperature and smoke detec-
tors nodes respectively, nodes 15, 16 represent temperature and smoke detector nodes
in the living room, while 17, 18 represent temperature and smoke detector nodes in
the smaller bedroom. In the closet attached to the smaller bedroom, nodes 19, 20 rep-
resent temperature and smoke detector nodes respectively. Nodes 21 and 22 respec-
tively represent temperature and smoke detector nodes in the lobby. Nodes 13, 14 are
temperature and smoke detector nodes respectively, located close to the base station
in the living room. All the temperature nodes in these areas sense and send their data
to the base station in the living room. The base stations are connected to each other
using peer-to-peer connection. Coloured representation of the signal strength degra-
dation due to obstacles can be seen in the Figure 8. Coloured representation is used to
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Fig. 8 Home automation - case study
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Fig. 9 Life time of the nodes

clearly show the effect of signal strength due to obstacles in the home environment.
Wooden obstacles are represented in yellow, glass obstacles are represented in blue,
and concrete walls are represented in red; the areas not affected by path loss due to
obstacles are not coloured.

Figure 9 shows the energy consumption of each node in one of the floors of the
building for free space environment and when the path loss due to obstacles (mainly
due to partitions) is introduced. It is evident that ignoring the effect of path loss would
be an optimistic assumption when energy consumed by each node is considered. The
obstacles considered are mainly the wall partitions used for indoor segmentation. The
results clearly show that avoiding path loss would cause overestimation of the WSN
lifetime. More precisely, the lifetime of the nodes 1 and 2 deployed in the bathroom
area is about 76 hours with no path-loss as compared to 70.5 when the exponent due
to the brick wall separating the bathroom and the pantry are considered. Similarly,
the lifetime of the nodes 21 and 22 is about 65.5 hours when the attenuation due to
the glass partition in the lobby area and also the brick wall separating the landing area
and the living room, as compared to 76 hours ignoring the effects of path loss. It can
also be observed that the nodes 3, 4, 5, 6, 13, 14, 15, 16 are not affected by path-loss
as they are not enclosed by walls or any obstacles. Hence, their lifetime is roughly
about 76.5 hours.

It is evident that ignoring the effect of path loss would be an optimistic assumption
when energy consumed by each node is considered. Results presented in Figure 9 are
particularly important to show the usefulness of a detailed and a realistic modelling
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tool. Our PlaceLife plug-in allows engineers to consider the nature of the obstacles of
the environment in details, thus providing a more realistic performance measurement.
Our PlaceLife plugin allows engineers to consider the nature of the obstacles of the
environment in details, thus providing a more realistic performance measurement.
While various components of PlaceLife are employed, the design of the simulation
does not get complicated since the architecture presented is user friendly. Please note
that the multi-view architectural approach allows the user to isolate the physical en-
vironment an incorporate various factors such as path loss, shadowing etc.

Fig. 10 Delay incurred at the base station

The simulation tool employed allows us to consider other measurements in ad-
dition to the lifetime of the WSN nodes. Various performance measures such as re-
sponse time (latency), the number of dropped packets etc. can be analysed in detail.
Figure 10 shows the latency of the packets received by the monitoring station located
in the living room. The results show that most of the packets have a latency interval of
230 ms. As the packet rate increases, the number of packets within the same latency
interval also increases. The figure also demonstrates the flexibility of the considered
system in terms of performance, availability, and energy-related measures.
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7 Related Work

In order to simplify the design and configuration of the WSN at large, and abstract
from technical low-level details, a number of MDE approaches or of modelling nota-
tions for WSN engineering have been proposed. Those approaches are used to specify
a WSN at different levels of abstraction (hardware, application, communication pro-
tocols, etc.) with the recurrent goals of code generation, communication overhead
analysis, and energy consumption.

The rest of this section is structured so to cover three related research areas: i)
frameworks for the engineering of WSNs (or related domains), ii) domain-specific
modelling languages for WSN, iii) other modelling and analysis approaches for en-
gineering WSNs, and iv) surveys related to the modelling and analysis of WSNs.

Frameworks for Engineering WSNs (or related domains): Engineering frame-
works strongly related to A4WSN have been presented in [6,65,54].

In Reference [6] the authors propose DiaSuite, a tool suite proposed for the de-
sign, analysis, and deployment of Sense/Compute/Control applications. The DiaSuite
domain specific design language supports the modelling of a taxonomy layer and an
application design layer. Those models are successively used to generate a dedicated
Java programming framework (to guide and support programmers to implement the
various parts of the software system), for simulation purposes, and for deploying the
application on a specific execution platform. When compared with A4WSN, Dia-
Suite has similar goals (modelling for analysis a code generation), but covers a dif-
ferent domain. As a result, the modelling languages are extremely different, and are
manipulated (for analysis and code generation) in different ways.

In [65] a set of modelling languages is the starting point for code generation and
performance (with energy consumption) analysis. Those languages are based on con-
cepts such as sampling task, aggregation task, network communication tasks, etc. and
they are the starting point of a model-driven process to enable a low-cost prototyping
and optimisation of WSN applications. In [49], a framework for modelling, simula-
tion, and code generation of WSNs is presented. The framework is based on Simulink,
Stateflow and Embedded Coder, and allows engineers to simulate and automatically
generate code with energy as one of the main issues.

In Reference [54] a multi-stage model-driven approach for IoT applications de-
velopment has been proposed. Such an approach takes into explicit consideration the
existence of five different types of IoT stakeholders, and according to their needs,
propose five different modelling languages. Those models are successively used for
code-generation and task-mapping techniques. Similarly to DiaSuite [6], while shar-
ing the same goals of A4WSN, the framework in [54] covers a different (still, related)
domain.

Domain-specific modelling languages for WSN: many approaches propose to use
DSMLs for representing WSNs from different viewpoints. For example, in [71] the
proposed modelling language contains concepts such as node group, region, resource,
wireless link; whereas, in [19] authors propose a set of languages spanning from
application-level actions (e.g., sense, send message, store data) to hardware specifi-
cations (e.g., processor, sensing devices, radio transceivers), and so on. In [69] the
authors propose Verisensor, a DSML based on concepts such as system, node class,
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application etc., with the possibility to automatically translate models towards a for-
mal language for checking the lifetime of the WSN and its correct behaviour.

In [14], the authors propose the LWiSSy domain specific language for wireless
sensor and actuator network systems. The LWiSSy metamodel comprises three views:
structural behavioural, and optimisation. Those three views are described in details,
and successively evaluated through a controlled experiment.

Other approaches, such as those proposed in [48] and [21], are based on generic
modelling languages. They mainly use extensions of UML and Simulink for repre-
senting a WSN.

In order to better understand how MDE has been used for designing and analysing
wireless sensor networks, [39] surveys and classifies state-of-the-art MDE approaches
for engineering WSNs.

Other modelling and analysis approaches for engineering WSNs: describing a
network from a structural point of view is very straightforward and easy to reason
on (just think about the component-based representation in Omnet++8, one of the
most popular network simulators). Also, an approach based on DDS (i.e., the data-
centric middleware standard introduced by OMG) is presented in [4]; the authors
proposed four types of modelling languages (namely for data types, data space, node
structure, and node conguration) and use them as input for a set of optimisation and
transformation steps, eventually delivering deployable application code as output.

Also, in some cases (e.g., when capabilities such as fault tolerance and security
analysis are needed) the structure of WSNs may not be enough, and thus describing
the behaviour of the WSN is fundamental. In [25], the authors address energy-aware
system design of Wireless Sensor Networks (WSNs). Energy mode signalling and
energy scheduling of nodes within a WSN are represented as SDL models, and then
analysed.

Rodrigues et al. in [58] proposes an MDA process where application domain ex-
perts model the Platform Independent Model (PIM) of a WSN application. Such a
PIM is successively transformed into a Platform Specific Model (PSM) and refined
by a network expert. Class and Activity diagrams are used to specify the WSN appli-
cation at the PIM level, while Component and Finite State diagrams are used at the
PSM level.

An approach for formal modelling and analysis of WSN in Real-Time Maude is
presented in [51]. In [63] Samper et al. propose the GLONEMO formal model for the
analysis of ad-hoc sensor networks.

For what concerns the physical environment of a WSN, the majority of approaches
in the literature does not allow designers to specify the physical deployment of the
WSN nodes. Among those that support (in some form) this feature, there is great vari-
ability. There are some approach which support an explicit definition of the physical
environment (e.g., in [19] the tool allows engineers to model real-world dimensions,
obstacles with attenuation coefficients, etc.); others allow designers to define physical
quantities (e.g., in [5] engineers can define models of the evolution of each physical
quantity in a given scenario), and so on. However, all these approaches do not provide
any intuitive and abstract means to easily define the deployment environment of the

8 http://www.omnetpp.org/
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WSN. A recent study [40] has investigated how WSN engineers currently specify the
physical environment and how they would like to do it.

Surveys related to the modelling and analysis of WSNs: A survey on system mod-
els in WSNs has been conducted in [68]: there the authors identify several dimensions
to be used to classify model (types) used to specify networked computing systems
(from models of signal propagation, to models of the application). Existing models
are then organized into a taxonomy. In [34] the authors survey 9 WSN modelling
techniques. Through this study, they show how each technique models different parts
of the system. The models here analyzed are extensions to existing notations, such as
SDL, Promela, UML, and others.

Final Remarks: A4WSN shares with some of the related approaches above the
wish to provide a clear separation of concerns between different modelling views,
to enhance reuse, to abstract from low level details, and to support early analysis
of WSN applications. What distinguishes A4WSN from other related work are i)
the modelling languages that have been selected for modelling WSN applications,
including an explicit graphical modelling of the application physical environment,
ii) the definition of models dedicated to the weaving of the three main modelling
languages, iii) the existence of an extensible programming framework that enables
third-party researchers and developers to reuse the A4WSN modelling environment
and programming framework when developing new analysis and code generation
engines. In this context, third-party researchers can focus exclusively on solving their
peculiar issues, while spending minimal effort and implementation time on realizing
the facilities already provided by A4WSN out of the box. iv) The maturity of A4WSN
with respect to other approaches that, while sharing some of our desires, seem to still
implement only a subset of them.

8 Conclusion and Future Work

In this paper a modelling platform supported by a dedicated programming framework
for the model-driven engineering of wireless sensor networks. The modelling view-
points and conceptual elements have been carefully designed in collaboration with
colleagues from various domains, such as software engineering, wireless sensor net-
works, and telecommunications. The programming framework functioning has been
tested by realizing a plugin devoted to energy-related simulation of WSNs.

The modelling and programming framework presented in this paper represent the
(starting but mandatory) foundation for a series of goals we are willing to achieve in
the mid-term.

Firstly, we plan to have the framework used by practitioners involved in the de-
velopment of WSNs. We wish to record and analyze their usage patterns and collect
their feedback for further improving our platform. At the time of writing, the frame-
work is being used by master students to model and analyze course projects, and it is
currently used in situational awareness projects handled by one of the co-authors.

Secondly, we are aware that it might be necessary to extend the modelling lan-
guages to provide additional concepts for supporting new analysis or code generation
engines. For example, we are working on providing new SAML data structures (either
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primitive or structured), new attributes for better specifying nodes in the NODEML
modelling language, and on the extension of the purposefully simple ENVML mod-
elling language (e.g., by adding multi-floor support for indoor deployments, by sup-
porting the specification of properties specific to outdoor setups, etc.). In this context,
introducing changes at the metamodel level might have a strong impact on the al-
ready developed plugins (model editors, model transformations, etc.). This problem
is called metamodel co-evolution management and it is well-known in the MDE re-
search field [11,60]. If we look at this problem from a different perspective, similarly
to what we proposed in a previous work on architectural languages interoperabil-
ity [62], a possible solution could be to provide a systematically defined extension
process for our modelling languages. According to this extension process, languages
extensions are organised into a hierarchy obtained by systematically extending a root
modelling language. Under this perspective, we plan to build on (and adapt, if needed)
metamodel co-evolution techniques [61,32] in order to tackle this problem.

Thirdly, we would like to realise an analysis plug-in that, while getting in input
a series of environmental configurations options, can tell us which configuration can
increase the network lifetime (so far, PlaceLife can evaluate the expected lifetime
of a given configuration, but is quite impractical to analyse comparatively alternative
solutions). We plan to use genetic algorithms and search-based approaches to achieve
such a goal.

Finally, we are working on a WSN performance analysis plugin that allows en-
gineers to run a trade-off analysis between energy consumption and performance
indices like sensor nodes throughput, reliability and network latency.
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Appendix A: The metamodels of the A4WSN modeling languages

In this appendix we show the metamodels of the A4WSN modeling languages. For
the sake of brevity, we do not describe each element of the languages, the details are
presented in the a dedicated technical report available online [38].

Fig. 11 SAML Metamodel: structural concepts (external metaclasses in pink)
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Fig. 12 SAML Metamodel: behavioural concepts (actions in green, events in red)

Fig. 13 NODEML Metamodel

Appendix B: The components of the Programming Framework

Figure 17 shows an overview of the A4WSN programming framework. All the boxes
within the programming framework represent the various components of the generic
programming workbench, whereas the C1..Cn and A1..An boxes represent third-
party code generation and analysis plugins, respectively. Third-party plugins extend
the Code Generation Manager and Analysis Manager components which provide the
needed extension points and they communicate with all the other components of the
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Fig. 14 ENVML Metamodel

Fig. 15 MAPML Metamodel

Fig. 16 DEPML Metamodel

programming framework (for the sake of clarity we do not show those connectors in
the figure). In the following we will discuss the facilities and duties of the various
components of the generic A4WSN programming framework, an overview of their
implementation details is provided in Section 8.

Models

The central element of the programming framework is the Models repository that
stores all the WSN models developed by architects and designers. Indeed, stored
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Fig. 17 The A4WSN programming framework

models can conform to any modelling language described in Section 4 which are
SAML, NODEML, ENVML, MAPML, and DEPML. The models repository can
be realised in different ways. For instance it may directly rely on the file system of
the machine running the A4WSN platform (this is the solution implemented in the
current version of the A4WSN tool), it may point to resources stored in the cloud or it
may refer to some in-memory models representation. If on one side this feature of the
models repository is very flexible in terms of resources consumption and localisation,
on the other side it opens for possible problems of interoperability between all the
other components of the A4WSN programming framework. This is exactly why the
Model Adapter component exists.

Model Adapter

The model adapter is a component which abstracts the nature of the models repository
to the other components of the A4WSN programming framework. The model adapter
is composed of a set of connectors (each of them tailored to a specific models storage
type) that expose a common interface to all the other components to access various
elements of the models in a homogeneous way. Also, the Model Adapter component
has a built-in model transformation, called Merger, that can merge linked models
defined in the A4WSN modelling environment. If we consider Merger as a function,
it can be defined as follows:

Merger: MMSAML x MMNODEML x MMENVML x MMMAPML x
MMDEPML→MMmerge

where each MMx is the metamodel of the x modelling language, where x can vary
between SAML, NODEML, ENVML, MAPML, DEPML, and MMmerge

is the union of all the MMx metamodels. In other words, Merger takes as an input
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an instance of each modelling language defined in the A4WSN modelling environ-
ment and provides a single model conforming to a unique metamodel as an output.
The reason behind the existence of the Merger transformation is that currently many
approaches and tools for code generation and analysis assume to have a single model
as an input, rather than a set of models conforming to different languages. In order
to alleviate this issue with current approaches and tools (which could have hampered
the usefulness of the whole A4WSN platform), we decided to implement the Merger
as an internal transformation to merge separate models into a single one. Merger can
be executed at any time by plugin developers by calling a dedicated Java method.

Validation

The Validation component executes all the operations to validate A4WSN models:

– it checks whether one of the A4WSN models conforms to its corresponding meta-
model (metamodels are described in Section 4);

– it executes all the OCL constraints defined in each metamodel within the A4WSN
platform and checks whether they are satisfied or not;

– if defined, it executes the additional OCL constraints that are defined in some
code generation or analysis plugin and checks whether they are satisfied or not.

The result of a validation operation is composed of four main elements: (i) a
boolean value representing whether the involved model passes all the checks listed
above, (ii) a set of informative messages that describe the result of the validation in
a human-readable way, (iii) a set of in-memory representations of all the elements
in the models which do not satisfy some of the checks listed above, and (iv) a set of
actions that can be executed by the A4WSN platform as a quick fix of the identified
violations (quick fix operations can be defined in the plugins extending the A4WSN
platform).

The Validation component communicates with Model Adapter in order to access
various elements of the models to be validated. Also, it communicates with the Mes-
sages Manager and the UI Manager components to show the informative messages
belonging to M to the user and to highlight the elements in their graphical editor
violating the constraints, respectively.

Messages Manager

The Messages Manager component serves to graphically show informative messages
to the user. A4WSN supports three kind of informative messages which are error,
warning and information. Plugin developers can decide the type of each message to
be shown, depending on its severity. Each message is defined as a couple < K,T >,
where K represents the type of message (i.e., error, warning, or information) and T
represents the textual content of the message in a human readable way.
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UI Manager

The UI Manager component is responsible for the main facilities interacting with the
user interface of the A4WSN platform9. The UI Manager component provides all the
graphical facilities to interact with the plugins and elements of the A4WSN platform,
which are:

– Code Generation Engines View: a dedicated view showing a list of all the avail-
able code generation engines (with their description, icon, name, etc.), together
with their management facilities, such as code generation activation, code gener-
ation results viewer, etc.;

– Analysis Engines View: a dedicated view showing a list of all the available analy-
sis engines (with their description, icon, name, etc.), together with their manage-
ment facilities, such as analysis activation, analysis results viewer (significantly
different from the code generation results viewer), etc.;

– Code Generation Contextual Menu: a contextual menu that triggers the execution
of a code generation engine. A contextual menu is associated to each model of
the A4WSN modelling environment;

– Analysis Contextual Menu: a contextual menu that triggers the execution of an
analysis engine. A contextual menu is associated to each model of the A4WSN
modelling environment;

– Validation Trigger: a contextual menu and a dedicated button in the graphical ed-
itor of each model of the A4WSN modelling environment that triggers the valida-
tion of the current model. Optionally, the user can identify which plugin contains
additional constraints to be checked. The results of the triggered validation are
managed by the Messages Manager component;

– Code Generation and Analysis Progress Feedback: provides an element in the UI
that graphically shows the progress of the triggered code generation or analysis.
A4WSN provides two types of progress feedback, a progress bar for activities in
which all the steps are known a priori and a round indicator for activities with an
unknown length.

– Plugin Additional Parameters View: provides a dedicated view in which users
can provide additional parameter to be passed to the code generation or analysis
engine being triggered. Plugin developers can specify the number, name, and type
of those parameters by using a specific extension point.

Parameter Provider

Parameter Provider component manages the additional parameters that a code gen-
eration or analysis plugin may require for carrying on its activities. As previously
mentioned, additional parameters are defined by using a specific extension point
of the A4WSN programming framework; each parameter is defined as a triplet <
name, T, default >, where name is the unique name of the parameter, T is the

9 Also the Messages Manager interacts with the UI of the A4WSN platform, however its impact to the
UI is much more limited than that of UI Manager.
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type of the parameter, and default is the optional default value of the parameter.
Available parameter types are listed below.

– String: a textual value;
– Integer: an integer numerical value;
– Float: a decimal numerical value;
– Boolean: a boolean value;
– Local Resource: a file in the local file system of the user, it is referenced by its

path in the file system;
– Remote Resource: a resource in the cloud that can be accessed by a standard

HTTP GET request and is referenced by its URL.

Once the user has provided the values of the additional parameter of a code gen-
eration or analysis engine, the Parameter Provider component makes them available
to the plugin realizing the engine so that it can access them before actually executing
the activity which is being triggered by the user.

Code Generation Manager

The Code Generation Manager provides a set of facilities for managing code genera-
tion engines and the extension point that is used by code generation plugin developers
(see Section 8 for more details). For instance it checks which plugins are currently
extending its extension point and makes their facilities available to the end user. It
includes all the registered code generation plugins into the Code Generation Engines
View of the UI Manager. It loads plugins into the contextual menus of the A4WSN
modelling environment. It automatically triggers the validation operations defined by
the plugins before executing the actual code generation operation. Also, the Code
Generation Manager component exposes a common Java API to plugin developers,
so that they can easily interact with all the other components of the A4WSN pro-
gramming framework. For example, it allows developers to access elements of the
models in the Models Repository to push messages to the end user via the Messages
Manager and it makes the additional parameters provided by the end users accessible
directly as Java objects.

Analysis Manager

The internal logic of the Analysis Manager component is analogous to that of Code
Generation Manager. The only difference is that it is designed for analysis plugins,
rather than for code generation plugins. Due to its similarity to Code Generation
Manager, the reader can easily grasp its functioning from the description of the latter,
so we will not describe the Analysis Manager component in this paper. In Section 8
we discuss the extension points that are available to code generation and analysis
plugin developers.
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Extension Points

The concept of extension point is nicely described in the Eclipse Wiki10, it says that
the extension point declares a contract, typically a combination of XML markup and
Java interfaces, that extensions must conform to. Plug-ins that want to connect to that
extension point must implement that contract in their extension. The key attribute is
that the plug-in being extended knows nothing about the plug-in that is connecting
to it beyond the scope of that extension point contract. This allows plug-ins built by
different individuals or companies to interact seamlessly, even without their knowing
much about one another. The last part of the Eclipse definition of extension point says
exactly what we are demanding to the WSN research community, i.e., not to rebuild
the wheel by focussing on modelling languages, graphical editors, etc., but rather to
focus on code generation and analysis of WSN applications by developing A4WSN
plug-ins.

Table 3 shows various extension elements that can be set by third-party developers
with their plugins. For each element we specify its name, whether it belongs to the
code generation (column titled CG) or analysis extension point (column titled A),
and a description about how it will be used by the generic A4WSN programming
framework.

The extension points defined in the A4WSN programming framework are used to
group code generation and analysis engines into two different groups, so that the end
user knows where those engines can be found. Also, they are used to provide a com-
mon, standard behaviour to various engines that may be defined upon the A4WSN
modelling environment. Both the Code Generation Manager and Analysis Manager
provide a standard management of the workflow that must be followed when exe-
cuting those engines. For example, they automatically call the pre-actions defined
by using the Pre Action element of the previously defined extension point (the same
holds for the post-action). Automatically manage the success and error messages to
be shown after the execution of either a code generation or analysis operation, auto-
matically update the UI of the modelling framework depending on the available plu-
gins extending A4WSN, etc. Moreover, since plugin developers must comply with to
the extension points defined in the A4WSN programming framework, they will be
more keen to provide engines that are straightforward to integrate and with common
basic functionalities, thus easier to use by end users. Section 6 describes an example
of plugin for estimating the energy consumption of a WSN, it will be applied to our
case study in the health care domain.

Appendix C: implementation of A4WSN

We make the current prototype of the proposed approach available to the community
as an open-source product with MIT license in order to allow other researchers to use

10 http://wiki.eclipse.org/FAQ What are extensions and extension points\%3F
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Element CG A Description
Name X X The name of the engine being provided which will be shown in the engines view

and contextual menus.
Icon X X An image icon of the engine being provided which will be shown in the engines

view and contextual menus.
Description X X A textual description engine being provided which will be shown in the engines

view.
Network Access X X A boolean for declaring whether the engine uses the network for its operations

which will be shown in the engines view.
Operation Time X X An estimation of the time needed to complete the operation being defined which

will be shown in the engines view.
Target Languages X - A list of the target implementation languages which will be shown in the engines

view and contextual menus.
Target Path X - The path in the file system (local to the location of the plugin) to which the

generated code will be saved.
Analysis Type - X A list of the properties that will be checked during the analysis operation (e.g.,

performance, security, etc.); it will be shown in the engines view.
Keep Intermedi-
ate

- X A boolean value (optionally a path in the file system) to specify whether (and
where) the analysis engine keeps possible intermediate resources.

Additional Pa-
rameters

X X A list of parameter types definition that will be used by the Parameter Provider
component of A4WSN.

Validation Con-
straints

X X A list of OCL constraints, together with their informative messages and quick fix
operations that must be used by the Validation component of A4WSN.

Pre Action X X A reference to a Java class defining the method that will always be called before
executing the engine being provided.

Post Action X X A reference to a Java class defining the method that will always be called after
the engine being provided is executed.

Table 3 Elements of the extension points for code generation or analysis plugins

the modelling languages introduced in Section 4 as well as the programming frame-
work described in Section 5. The current prototype of A4WSN can be downloaded
from the A4WSN website (http://a4wsn.di.univaq.it).

We implemented the proposed approach by extending the Eclipse platform11.
Eclipse is an open-source development platform comprised of extensible frameworks
and tools for building, deploying and managing software across the life cycle. We
decided to use Eclipse as starting point for our modelling environment for three main
reasons. First, many extensions already exist covering some aspects of our approach
(e.g., graphical syntax definition for newly created languages, models persistence
support, etc.). Second, its plugin architecture allows us to provide a set of extension
points that other developers can use to extend our modelling framework,. Third, the
Eclipse community is widely spread throughout the world, raising the possibility of
adoption of our modelling environment.

For what concerns the modelling languages, model-driven engineering techniques
are used to define their concepts, and their modelling environment. More specifically,
we specified the static semantics of the languages by means of their underlying meta-
models. Those metamodels are defined by using the Eclipse modelling Framework
(EMF)12, that is a Java framework and code generation facility for building tools and

11 Eclipse project Web site: www.eclipse.org.
12 EMF project Web site: http://www.eclipse.org/modeling/emf/.



A4WSN: An Architecture-driven Modelling Platform for Analysing and Developing WSNs 49

other applications based on a metamodel. The concrete syntax of the modelling lan-
guages has been defined by using the Graphical modelling Framework (GMF)13, a
model-driven approach to generate graphical editors in Eclipse.

The intermediate modelling languages (i.e., MAPML and DEPML) are techni-
cally called weaving models. Weaving models are special kinds of models for defin-
ing relations among other models and to establish semantic links among model ele-
ments. Weaving models have been successfully used in many fields, such as software
architecture [42] and software product lines [12]. We use the Atlas Model Weaver
(AMW) [18] for managing those weaving models.

For what concerns the programming framework, we implemented it as a set of
Eclipse plugins, each one implementing a single component of the programming
framework, as it is depicted in Figure 17. Those plugins are implemented in Java
and their dependencies are realized by means of the plugins management system pro-
vided by Eclipse. Each plugin declares the others it depends on and configuration
parameters via a specific XML configuration file. The communication among plug-
ins is handled by standard Java calls. Also, the code generation framework and the
analysis framework provide two extension points dedicated to code generation and
analysis plugins, respectively. The signatures of those extension points are defined in
the same XML configuration files used for defining the dependencies between plug-
ins, whereas their implementation is defined as Java classes referenced by the XML
configuration files. For the sake of brevity, we do not provide the details on how the
programming framework works and on how its plugins interact. A detailed descrip-
tion of those aspects can be found in the Eclipse plugin developer guide14.

13 GMF project Web site: http://www.eclipse.org/modeling/gmf/.
14 Eclipse Platform Plug-in Developer Guide: http://help.eclipse.org/helios/index.jsp


