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Abstract—Intelligent Environments (IE) are a very active area

of research and a number of applications are currently being

deployed in domains ranging from smart home to e-health and

autonomous vehicles. In a number of cases, IE operate together

with (or to support) humans, and it is therefore fundamental that

IE are thoroughly verified. In this paper we present how a set

of techniques and tools developed for the verification of software

code can be employed in the verification of IE described by means

of event-condition-action rules. In particular, we reduce the

problem of verifying key properties of these rules to satisfiability

and termination problems that can be addressed using state-

of-the-art SMT solvers and program analysers. We introduce a

tool called vIRONy that implements these techniques and we

validate our approach against a number of case studies from the

literature.

I. INTRODUCTION

Intelligent Environments (IE) are growing fast as a multi-
disciplinary field, allowing many areas of research to have
a real beneficial influence in our society. IE encompass an
heterogeneous range of scenarios and applications that include
smart homes, e-healthcare, e-learning, smart factories, au-
tonomous vehicles, etc. [1]. IE systems are specific examples
of reactive systems [2], which react to any stimulus (or event)
that occurs in the environment, maintaining a continuous
interaction with it. A common approach to program such
systems is via rules [3]. In general, these rules take the
form of Event-Condition-Action (ECA) rules [4]: an action
is executed if a certain event happens and a specific condition
is met. Due to the vast range of applications, IE have a great
impact in human day life. Therefore, it is fundamental to meet
important requirements for these systems such as correctness,
reliability, safety, security, desired reliable behaviour [5]. How-
ever, guaranteeing these properties for rule-based IE is a non-
trivial task [6]. In fact, programming rule-based systems is a
difficult and error-prone process (not only in IE) because the
interactions of rule actions can cause the system behaviour
to be unpredictable or unsafe. To face these challenges, the
verification of consistency and safety properties of IE systems
has became a necessity [7].

In this paper we present an approach for the verification of
ECA rules in IE based on techniques for software verification

and we introduce the tool vIRONy1 that implements these
techniques. vIRONy is based on the combination of formal
methods and simulation techniques, with the aim of supporting
programmers and end-users during the modelling and verifi-
cation phases of IE systems based on ECA-rules. The features
of vIRONy include:

• a syntactic analyser for checking the correctness of the
source program and for enabling users to identify and
avoid syntactic errors;

• a formal verification component based on different tech-
niques (SMT solvers and program analysers) in order to
check safety and correctness of the program expressed as
a set of ECA rules;

• a simulation environment to generate and investigate
specific behaviours of the system;

• a semantic analyser used to perform qualitative and
quantitative analysis of the system in terms of number
of rules invoked, energy efficiency, etc.

The rest of the paper is organised as follows: in Section II we
provide a detailed review of the literature; in Section III we
present the language IRON for ECA rules and its semantics;
in Section IV we formally define the properties we verify and
we present the verification algorithms; in Section V we present
the main features of the tool vIRONy. We report experimental
results obtained from several case studies in Section VI and
we conclude in Section VIII.

II. RELATED WORK

Due to the complexity of IE systems, it is necessary to apply
appropriate techniques and methods that allow establishing
correctness and safety properties [8]. Software testing [9],
by far the most used technique to improve software quality,
consists in executing only a sampling of all possible runs of
the system to be checked. This means that testing is not an
adequate technique for exhaustively checking the correctness
of complex systems as IE, since the number of possible
runs is intractable, in general, and the environment in which
the system run is not predictable. Thus, the application of

1The current version of vIRONy is open source and it is available at
https://gitlab.com/MichelangeloDiamanti/ecaProject.



formal methods is fundamental in analysiing and establishing
the correctness of such systems, especially in applications
in which safety is a critical issue, where a small error in
their design could put human lives at risk [8]. To face these
challenges, various approaches have been proposed in order
to verify and analyse ECA-rule based systems. In this section
we describe the ones that are closer to our work.

Authors of [10] propose an approach to analyse the dynamic
behaviour of a set of ECA rules by first translating them into
an extended Petri Net [11], then studying two fundamental
correctness properties: termination and confluence. Authors
in [12] investigate the possibility of using a pure Binary
Decision Diagram ([13]) representation of integer values, and
they focus on a particular class of programs, i.e., ECA rule-
based programs with restricted numerical operations. In [14]
a tool-supported method for verifying and controlling the
correct interactions of ECA rules is presented. This method is
based on formal models related to reactive systems to generate
correct rule controllers. A formalisation of an ECA rule-based
system is provided in order to perform the translation into
a Heptagon/BZR [15] program. The work offers users with
a combination of a high-level ECA rule language with the
compiler and formal tool support for Heptagon/BZR. Then,
coordination and control techniques are applied at run-time
by using Heptagon/BZR in order to complete the verification.
An approach based on formal methods is applied for the
verification of ECA rule systems in [16]. In particular, a set of
ECA rules is transformed into different kinds of automata and
then the automata verification tool Uppaal [17] is applied. The
approach is limited to performing model checking of timed
automata and their correspondence to the provided ECA rule
set.

The differences between each of these approaches and our
solution are discussed in Section VII, once our work has been
presented in detail.

III. PRELIMINARIES AND NOTATION

In this section we introduce IRON, a language for ECA
rules, and a formal model for the execution of ECA rules in
IE.

A. IRON
An Intelligent Environment is a physical or logical space

that contains a potentially very large number of devices, such
as sensors and actuators, that work together to provide users
access to information and services. ECA-based languages have
been proposed by a number of sources in order to program IE,
because programmers and users in particular are quite at ease
with them [3]. In order to allow programmers and end-users to
develop ECA-rule based systems in a easy and accessible way,
a clear and efficient domain-specific language is needed. Here
we employ Integrated Rule ON data (IRON) as the underlining
formalism for modelling IE. IRON is presented in [18]: it
is a restricted first-order logic language that supports the
categorisation of devices into sets [19], allows the definition
of properties over sets and supports multicast and broadcast

1 Program ⌘ ( Device | Rule | VarDecl )+;

2 Device ⌘ PhysicalDevice | LogicalDevice | Set;

3 PhysicalDevice ⌘ physical (sensor|actuator)
4 Type Id [= Exp]

5 node(Id Sep Id) [in id (Sep Id )*] [where BoolExp];

6 LogicalDevice ⌘ logical (sensor|actuator)
7 Type Id = Exp[in Id (Sep Id )*] [where BoolExp];

8 Set ⌘ set (sensor | actuator) Type Id;

9 Rule ⌘ rule Id on Id (Sep Id)*when BoolExp then Action;

10 Action ⌘ [Id = Exp ]+;

11 Exp ⌘ BoolExp | IntExp;

Figure 1. The IRON extended BNF

abstractions. IRON programs are composed of two separate
classes of specifications: static and dynamic. We report the
main constructs of the IRON syntax in Figure 1 (for further
details see [20]).

B. A formal model for ECA rules
In [21] we presented a model for ECA rule-based systems

that exploits the features that are typical of IE. The model is
based on IRON and it allows for a precise definition of formal
requirements and for their efficient verification. For the sake of
simplicity but without loss of generality, the formal model does
not include the definition of sets and the distinction between
logical and physical devices included in IRON (these could be
introduced at the cost of additional notation but do not affect
the overall partitioning strategy described below). The model
exploits the features that are typical of IE, taking into account
the fact that a generic action defined by the user can only
change actuator configurations.

We consider an ECA-rule based system consisting of: (i) a
set D of variables representing the input/output devices of
the system, denoted with i and o respectively (to refer to a
generic element of D we use the letter d); (ii) a set Inv of
static constraints inv of the system identifying the admissible
values for each device (each invariant is a restricted first-order
logic predicate as defined by the IRON grammar); (iii) a set
R of ECA rules of the form Event[Condition]/Action.

A state of the system is an assignment of values to the
devices in D and the universe is the set of states. In detail:

Definition 1. A state of the system is a function j : D!Val
where Val is a finite set of integer or boolean values.

Definition 2. The universe F of an ECA-rule based system is
the set of all possible states of the system. In other words, it
is the set of all possible functions j defined in Def. 1.

By adding constraints to the system, i.e. conditions that must
be satisfied, we can define the admissible state space:

Definition 3. Let F be the universe. The admissible state space
Fa is the subset of F whose elements are all the states j that
satisfy the constraints of the system.

Given a set D and a state space F , we consider a finite set R
of labels for ECA rules R= {r1,r2, ...,rk} for k2N0. A generic
rule r in R is represented as er[cr]/ar, where er ,cr ,ar are labels
for the event, the condition and the action of r respectively.



We refer to [21] for details about the evolution of the
system. We observe that devices can change their values
according to external changes (sensors) or internal changes
(actuators change their values in response to ECA rules being
triggered). As a consequence, the evolution of the system can
be partitioned into two sets: the set of artificial transitions
resulting from the activation of ECA rules, and the set of
natural transitions that result from changes in the environment.
According to this partitioning, we can distinguish between
stable and unstable states: the system is in a stable state if
only natural transitions can be applied, while unstable states
are those states to which only artificial transitions can be
applied. In addition, in order to avoid the exploration of
states and transitions that are not relevant to the analysis
of the properties we are interested in, we do not model the
spontaneous evolution of the environment. Instead, we only
give a representation of the natural evolution in terms of
“the minimum natural transition that links a stable state to
an unstable state”. The representation of the evolution of
the system is based on two important hypotheses: (1) the
initial admissible configuration of the system is given by an
external entity; (2) artificial transitions take much shorter time
than natural transitions. Finally, since we consider a finite
set of devices that can assume a finite set of values, it is
possible to represent the result of the evolution as a Finite
State Automaton (FSA) [22]. Its graphical representation is a
directed graph whose edges correspond to the transitions of
the system and the vertices are the states.

IV. PROPERTIES AND VERIFICATION ALGORITHMS

The application of formal verification techniques to ECA
rule-based programs is essential to support the error-prone
activity of defining ECA rules. Our aim is to avoid “unsafe”
and “incorrect” situations deriving from erroneous definitions
of ECA rules that may result in inefficient or potentially
dangerous effects on the real world. Based on literature review
of related and previous works (see for instance [18], [14]), we
identify those properties that can be considered representative
for “safety” and “correctness” of ECA rule-based systems.
These properties are: termination, consistency and determin-
ism. We formally define each of them and we present the
verification algorithms below.

A. Properties

ECA rule-based systems for IE can respond to external
and internal events with the application of one or more rules.
While external events are generated by environmental changes
(sensors), internal events are generated by the application of
actions (e.g., changing the value of actuators). An erroneous
specification of the system can lead to infinite loops where
rules can be applied an infinite number of times.

1) Termination: We define the termination property as
follows:

Definition 4. An ECA rule-based system satisfies the termina-
tion property when all stable states (that satisfy the conditions

of some rules) always lead (with the application of a finite
number of rules) to a new stable state.

Intuitively, as the number of rules is finite, we deduce that
termination property is satisfied if there are no cycles.

2) Consistency: We recall the definition of consistency (see
[20] for further details):

Definition 5. An ECA rule-based system satisfies the consis-
tency property if its rules are neither unusable nor incorrect
nor redundant.

The notions of unused, incorrect and redundant rule are
defined as follows.

Definition 6. An ECA rule r 2 R is called unused if the
condition c is false for every state j 2Fa.

Definition 7. Incorrect rules are those rules that can lead to
a state that is outside of Fa.

Definition 8. Given ri,r j 2 R such that ri : ei[ci]/ai, r j :
e j[c j]/a j we say that ri is redundant with respect to r j if the
following conditions are met:

1) ei ✓ e j;
2) ci ^ Inv) c j is satisfiable (where, by slight abuse of

notation, we denote with Inv the conjunction of all
invariants); and,

3) for every state j satisfying ci ^ Inv, applying ai to j
is equivalent to applying a j to j , which we write as
j[ai] = j[a j].

3) Determinism: Due to the unpredictability of external
changes (natural events) and the interactions between rules,
it is difficult to guarantee determinism of the system. We can
express this property for ECA-rule based systems as follows:
a pair of rules ri,r j is non-deterministic if there is at least
one admissible state in which both rules are triggered and the
effects of their actions on the system are not the same. More
formally, the definition can be expressed as follows.

Definition 9. Given ri,r j 2 R such that ri : ei[ci]/ai, r j :
e j[c j]/a j, we say that the system is non-deterministic if the
following conditions are met:

1) ei\ e j 6= /0;
2) ci^ Inv^ c j is satisfiable;
3) 9j that satisfies ci^ Inv^ c j and j[ai] 6= j[a j].

Condition 1. means ei and e j have at least a common
label. Thus this condition, if met, guarantees that at least the
occurrence of an event triggers both ri and r j. If both 1. and
2. are verified, than ri and r j are applicable to the same state.
If the result of applying action ai is different from the result
of applying a j for at least one state j in ci^ Inv^ c j, then ri
and r j make the system non-deterministic.

B. Verification algorithms
In this section we present the methods, techniques and ver-

ification algorithms that are used for verifying the properties
previously defined.



1) Termination verification: In order to prove termination
we make use of T22 (see [23], [24], [25]) a tool designed
to prove temporal properties of programs, such as safety
and termination. The tool implements the TERMINATOR-
based approach to termination proving (see [26]) with some
modifications as described in [23] and [25]. The idea of
the technique is to reduce the checking of termination ar-
guments to an incrementally evolving safety problem. T2
represents programs as graphs of program locations connected
by transition rules with conditions (expressed by the command
“assume”) and assignments to a set of integer variables V .
The canonical initial location is called START.

Given a generic rule-based program written in IRON syntax
that has been defined in Fig. 1, we show here how it can
be translated into T2 format. The translation algorithm can
be found in Fig. 2. Consider a generic program in IRON

1 let D = I[O the set of declared labels

2 let R := {r1, ....,rk} the set of rules such that each r 2 R is of

the form r : er [cr ]ar where er = {dw1 , · · · ,dw f }⇢ D and

ar = {oa1  va1 , · · ·oap  vap} , with oa1 , . . . ,oap 2 O
3 let Inv_set := {inv1, ...., invv}
4 let o = val the initial value for o 2 O

5 define Inv =
v̂

j=1
inv j

6 for each d 2 D:
7 define d_changed

8 for each r 2 R
9 for each oa j 2 ar

10 define o_prime

11 for each d 2 er
12 let d_check = (d_changed!= 0)

13 define eT2_r =

_

d2er

d_check

14 write
15 START: 0;

16 FROM: 0;

17 assume(Inv); //invariants

18 for each i 2 I // sensor initial values

19 write i := nondet();

20 for each o 2 O // actuator initial values

21 write o := val;

22 for each o_changed //actuators changes

23 write o_changed := 0;

24 for each i_changed //sensors changes

25 write i_changed := nondet();

26 TO : 1;

27 for each r 2 R
28 write //rule r

29 FROM: 1;

30 assume((Inv) && (eT2_r) && (c_r));

31 for each oa j 2 ar

32 write
33 o_prime := va j;

34 o_changed := (o-o_prime);

35 o := o_prime;

36 for each o 2 O such that o 6= oa j 2 ar8 j
37 write o_changed := 0;

38 for each i 2 I
39 write i_changed := 0;

40 TO : 1;

41 end

Figure 2. Algorithm for translating input files from IRON to T2 format.

consisting of a set of devices D, a set of rules R and a set of
invariants Inv set (see lines 1�3 in Fig. 2). We consider the
set of initial states characterised by an assigned configuration

2available at https://github.com/mmjb/T2.

Figure 3. Execution model of IRON programs in T2.

of actuator values (line 4). We define a set of variables in lines
5�13 that are used for the translation. Lines 14�40 describe
the algorithm for generating the program in T2 format. This
program corresponds to the automaton represented in Fig. 3
that is characterised by two states that we generically name
0 and 1. The execution starts from state 1, characterised by:
the assigned configuration of values, a generic configuration
of sensors (the function nondet() assigns values randomly). In
addition, state 0 is admissible, as the invariants are assumed
as valid (line 17). A natural transition (line 26) corresponds to
a transition from state 0 to state 1. When a natural transition
moves the state from 0 to 1, the rules in R, i.e., the artificial
transitions of the system, as shown in Fig. 3, can be applied
when their corresponding event is met (line 30).

Proposition 1. The algorithm in Fig. 2 is correct.

Proof. First, we show that if a generic ECA rule can be
activated in an IRON program (PIRON), then it can be activated
in the corresponding T2 program (PT 2) too, and vice-versa. In
fact, given a generic PIRON and a generic ECA rule r : er[cr]ar
such that r 2 PIRON , the rule is activated if and only if: (i)
the invariants are valid; (ii) the event er is triggered (i.e., if
a change concerning the value of at least one of the labels
in er occurs); (iii) the condition cr is valid. As shown in
Fig. 2, these three conditions are all reported verbatim in the
assume at line 30. Now we show that there is an equivalence
in the execution semantics of PIRON and PT 2 programs. If a
natural change occurs, then ECA rules whose events capture
this natural evolution are considered for an eventual activation.
The natural transitions correspond in PT 2 to the transition
FROM 0;[..] TO 1; (line 16� 26), and the natural changes
correspond to the assignments to sensor variables through
the nondet() function (line 19). When a natural evolution
occurs, and the program PT 2 is in state 1 then, if conditions
(i)-(iii) are met for a certain ECA rule, this rule is executed.
Furthermore, the activation of the ECA rules in PIRON is non-
deterministic, and this non-determinism is maintained in PT 2,
since all rules are applied to the state 1 (FROM 1 at line 29).
When an activation of an ECA rule in PIRON is performed,
the system is frozen, in the sense that natural transitions are
not taken into account: this condition in PT 2 is fixed at lines
38� 39. The T2 program does not allow any other kind of
transition between states, and therefore the executions of the
IRON and the T2 program are isomorphic.

2) Consistency verification: The algorithms for verifying
the consistency property are described in detail in [20]. The
key insight of the verification approach is observing that it is



possible to perform consistency verification of ECA rule-based
systems by using Satisfiability Modulo Theories (SMT) [27],
[28] and predicate transformer techniques ([29], [30]). We
briefly report in this paper the verification algorithms (see
[20] for further details). An SMT solver is any software that
implements a procedure for satisfiability modulo some given
theory, for example the theory of linear arithmetic. Typically,
SMT solvers support several fragments of First Order Logic
(FOL). The solution of an SMT problem is an interpretation
for the variables, functions and predicate symbols that make
the formula true [28]. We use Z3 [31], a high-performance
SMT Solver implemented in C++ and developed by Microsoft
Research.

3) Determinism verification: The verification procedure of
the determinism property is very similar to that one of redun-
dancy, and it is performed under the same hypothesis. The
algorithm is described in Fig. 4. All the pairs of distinct rules
are considered. According to Definition 9, three conditions
must be verified: if two rules are triggered together, i.e., the
event parts have a least a common label, both conditions are
met, and the actions have different effects on the system,
then the system is non-deterministic. The procedure described
below must be performed for all pairs of rules (line 4) .

1 let R := {r1, ....,rk}
2 let I := {inv1, ...., invv}

3 define Inv =
v̂

j=1
inv j

4 for each pair ri,r j 2 R2
such that ri 6= r j and such that ri,r j

are usable:
5 if (ei \ e j) is non-empty and ((ci ^ Inv^ c j) is satisfiable)

6 and ¬(ci ^ Inv)Y(ai,a j)) is satisfiable):

7 declare the system nondeterministic
8 end

Figure 4. Algorithm for verifying determinism.

Proposition 2. The algorithm in Fig. 4 is correct.

Proof. The proof is similar to that one of the correctness of
the algorithm for the verification of redundancy (see [20] for
further details). Indeed, requirements (1) and (2) of Def. 9 are
checked verbatim in the algorithm. Thus, it remains to show
that the algorithm is correct w.r.t. requirement (3). It can be
rewritten as follows: 9j 6|= ci^ Inv^ c j,j[ai] = j[a j] . Notice
that requirement (3) of Def. 9 is equivalent to the negation of
requirement (3) of Def. 8.

V. THE TOOL VIRONY

In this chapter we present vIRONy, the prototype tool that
has been implemented to evaluate the proposed approach.

A. Graphical User Interface
Figure 5 depicts the graphical interface of the tool: users can

select input files written in IRON syntax and select the desired
functionality. In order to provide programmers and end-users
with an easy to use tool for modelling and analysing ECA-rule
based programs written in IRON syntax, the tool resembles
the Eclipse IDE. The user interface and the components are

Figure 5. Graphical User Interface of vIRONy

implemented in Java Swing. When the user opens a file for
the first time, a TabbedPane containing JavaSwing objects
organised in sheets is opened. The main components of the
TabbedPane are:

• Development area: it is a TextArea the user can use to
write or modify the program.

• Functionality panel: the user can access the desired
functions in order to analyse or generate a simulation
of the program.

In detail, by accessing the Functionality panel the user can
insert the initial configuration of values (Input tab), visualise
the resulting graph of the simulation generated by using
the GraphStream library (Graph tab), make queries on the
resulting simulation (Queries tab), perform a formal analysis
of the program (Analysis tab), check if the output console gives
errors (Errors tab).

B. Syntactic analysis
The parser of vIRONy is implemented using Java Compiler

Compiler3. The vIRONy parser only accepts input files written
in IRON. As we showed in Section III, the IRON language
consists of two main components, the static part which in-
cludes labels and invariants, and the dynamic part that is made
up of ECA rules. Labels are used to uniquely identify the
devices of the system. Each label declaration must contain the
name of the device, the value type (int or bool) and the device
category (in or out). The declaration of the invariants consists
in a boolean expression enclosed by square brackets. The
syntax of ECA rules is rule : event[condition]action, where
rule is a string that uniquely identifies a rule, the event is
a non-empty set of labels (guards) separated by commas,
the condition is a boolean expression, the action is a set of
assignments to actuators. The user can write the input file
using the TextArea or visualise an existing one, and before
performing any kind of operation (e.g. simulation, formal
analysis, etc.) the parser is automatically called in order to
check the syntactic correctness of the program. If there are
errors, the chosen operation is cancelled and it is possible
to visualise the errors found through the Errors tab that is
automatically opened by the tool.

3See https://java.net/projects/javacc for further information.



C. Formal verification

The verification procedure is based on the formal techniques
described above.

1) Termination verification: In order to use T2 for
analysing termination, vIRONy provides the users with a
procedure for translating the input file written in IRON syntax
into the T2 format. The file is then stored in the computer, and
available as input file for T2. T2 is run from the command line,
using the termination: command line argument (to prove
(non)termination). The user can select the initial configuration
of values for the actuators, and then by submitting them,
verification of termination is performed.

2) Consistency and determinism verification: As intro-
duced in Section IV, the verification of consistency and
determinism properties implemented in vIRONy makes use of
the SMT solver Z3. From an implementation perspective, in
order to use Z3, a recursive algorithm has been implemented
to translate the expressions generated by the parser into
expressions semantically equivalent to the initial ones that can
be verified by using the SMT solver.

D. Simulation

Once an input file has been defined, it can be useful for the
programmer to predict how the system would react to external
stimuli, in order to observe the phases of the evolution of the
system and for a deeper understanding of the reasons that
cause undesired behaviours. However, it is very difficult to
be predict the execution of the system, since rules interact
in a complex way and the external environment changes in an
unpredictable manner. For these reasons, we provide users and
programmers with a function to simulate a possible behaviour
of the system given a particular configuration of actuators.

The simulation generated by vIRONy is based on the
formal model introduced in Section III and explored in detail
in [21]. Before explaining the simulation procedure, we make
a preliminary observation: for the sake of simulation and
differently from the verification step using Z3 and T2, devices
can assume only a finite set of values (we choose for integers
the range [�128,127], but this arbitrary choice can be easily
changed). From the user perspective, the Simulation menu
allows to start a computation. After having pressed the button
Start simulation the Input tab at the bottom is configured to
allow the user to set the initial configuration of values. Then
Z3 checks if it is admissible for the system: if the configuration
is admissible, the simulator starts the procedure, otherwise an
alert is generated for the user. If the user only gives the con-
figuration of the actuators, the system automatically searches
for the configuration of sensors such that the complete state is
admissible (by default the system searches for the “minimum”
sensor configuration according to the lexicographic order of
the elements of the table containing only sensor labels). Once
a configuration is found, the simulator starts the generation
procedure of the transitions. Once the computation finishes,
the tool automatically visualises the resulting graph in the
corresponding tab. It is possible to export the graph in the

GraphML format4 or as an image by selecting the desired
option from the Graph menu.

E. Analysis of the simulation

After the simulation is generated, end-users can analyse the
resulting graph. We provide different strategies for a deeper
understanding of the rules from a quantitative perspective that
is strictly linked to energy saving problems. Different algo-
rithms have been implemented and they have been grouped
together under the Queries tab. We highlight the fact that
the analysis is based only on the graph resulting from the
simulation, so the results depend on the initial configuration
chosen by the user. We mention here a subset of the algorithms
available:

• Most used rules. This query is used to find out the rules
that are used the maximum number of times during the
simulation.

• Initial rules. This query asks the simulation for those rules
that are triggered by a natural event.

• Actuator updates. This measure counts how many times
the values of the actuators are modified by ECA rules.

• Find cycles. The query extracts the cycles from the graph
and reports the graphical representation of each cycle.

• Find paths. This query explores the graph and finds out
all possible paths reaching a certain state of the system
starting from another one.

VI. EVALUATION

In this section we consider four case studies taken from
related and previous work and we present performance results.
We report only results and we refer to the files available on-line
for further details. All the experiments have been performed
on an Intel Core i7-4700MQ CPU @ 3.4GHz with 8GB of
RAM running Debian Linux.

The first case study (CS1) is a lighting control system in a
simple scenario and it has been adapted from the example
presented in [20]. The second case study (CS2) has been
adapted from [10], where a light control subsystem in a
smart home for senior housing is considered (see [20] for
further details). The third case study (CS3) has been developed
starting from the example presented in [32] and presented in
[20]: a fire alarm system composed of temperature sensors,
smoke detectors and sprinkler actuators is described by means
of ECA rules. The fourth case study (CS4) consists of a
Wireless Sensor and Actuator Network (WSAN) composed
of five devices for an irrigation management system and
controlled use of fertilizers.

In Table I we report some information about the case studies
and the corresponding results of the formal analysis performed
using the vIRONy tool. In detail, we report the cardinalities of
the universe |F| and of the admissible state space |Fa|. We also
give the number of analysed ECA rules Ntot , the number Ndev
of devices, the number of unusable, incorrect and redundant
rules (denoted with Nun, Ninc, Nred) detected by the tool.

4http://graphml.graphdrawing.org



Table I
FORMAL ANALYSIS: SYNTHESIS OF THE RESULTS.

CS1 CS2 CS3 CS4
|F| 28 230 216 219

|Fa| 9 ·24 1331 ·214 28 ·59 225 ·28

Ntot 20 17 14 17
Ndev 8 9 9 5
Unusable
Rules r5 r14 r7,r8,

r11,r12 r5,r8,r9

Nun 1 1 4 3
Tun (ms) 135 141 105 141

Incorrect
Rules

r11,r10
r13,r12
r14,r9,r1

r2 no r3,r4,r6,r7,
r7c,r1,r2

Ninc 7 1 0 7
Tinc (ms) 235 252 173 230
Redundant
Rules

r4,r6,r7,
r8,r19 r11 r9,r10 none

Nred 5 1 2 0
Tred (ms) 715 696 419 495
Determinism non-det non-det non-det non-det
Tdet (ms) 183 190 125 228

Termination
Term./
nonterm.
proof failed

Term.
proof
succeeded

Term./
nonterm.
proof failed

Term.
proof
succeeded*

Tter (s) 88 9 7 457

Furthermore, we measure the performance of the verification
procedure in terms of time. The indicators Tun, Tinc and Tred ,
Tdet (expressed in microseconds) refer, respectively, to the
duration time of the verification for unusability, incorrectness,
redundancy, determinism and Tter is the duration time of the
verification of the termination property.

The results in Table I show that our approach allows for
the verification of the consistency property of non-trivial
examples that include both boolean and integer variables
in approximately 1 second (see [20] for further details).
All the examples presented here are non-deterministic. The
verification of this property requires a more-or-less constant
time that is independent of the size of the state space and is
only partially affected by the number of rules. The analysis
of verification of termination requires special care: as it can
be seen from the examples, the tool T2 is able to prove
termination in 50% of the cases. This is expected, as proving
termination is an undecidable problem. However, T2 is a sound
tool and therefore, if an answer is provided, then we know that
the result can be trusted. Verification of termination is a slower
process if compared to the other properties. In particular, the
process can take up to 10 minutes for larger examples (CS4).
Moreover, it should be remarked that T2 is non-deterministic:
this means that the tool may select different strategies even
if it is invoked on the same example. As a result, in some
cases (such as for CS4) it may happen that the tool sometimes
finds a proof, and sometimes it fails with an out-of-memory
or timeout error.

The evaluation is also used to assess the performance of the
simulation environment of vIRONy. Table II reports for each
case study the performances of the simulator implemented in
vIRONy. The performances are measured in terms of time
Tsim (expressed in milliseconds), and the initial configuration

Table II
SIMULATION: SYNTHESIS OF THE RESULTS.

CS1 CS2 CS3 CS4
Tsim 2066 5673 359002 5030

Initial
Values

Bl: F,
Bm: F,
Bs: F,
Ll: F,
Lm: F,
Ls: F,
Ba: F,
La: F

lgtsTmr: 0,
intLgts: -128,
Lgts: F,
ChkExtLgt: F,
ChkMtn: F,
ChkSlp: F,
Mtn: F,
Slp: F,
ExtLgt: 0

temperature: -9,
smoke: F,
presenceLiving: F,
sprinkler: F,
heating: F,
tv: F,
light: F,
tempAlarm: F,
smokeAlarm: F

c: 0,
f: F,
w: F,
r: F,
t: 0

Table III
SIMULATION ANALYSIS: SYNTHESIS OF THE RESULTS.

CS1 CS2 CS4

Initial Rules r10, r7, r17,
r2 : 1 time r8 : 3 times r1c, r6, r7, r7c,

r1 : 3 times
Time (ms) 21,5 16,8 84,4

Actuators
Updates

La, Ba :
• times

ChkExtLgt, Lgts,
ChkMtn : 0 time,
ChkSlp : 24 time,
lgtsTmr : 1 time,
intLgts : 25 times

c, w : 15 times,
f : 3 times

Time (ms) 67,9 2,9 0,7
Find cycles 3 0 0
Time (ms) 69,2 27,9 0,1
Find Paths
Time (ms) 328,1 n/a 184,0

of actuators is detailed for each case study (the value “F”
represents “false”). In Table III some of the results obtained by
the semantic analysis performed on the generated simulations
(ref. to Table II) are reported. End-users can benefit from
these results as they allow to analyse the system in terms of
energy consumption and efficiency of the system, for a deeper
understanding of the rules and the system from a quantitative
perspective that is strictly linked to energy saving problems.

VII. DISCUSSION

Compared to our approach, the approaches in [10] and
[12] do not provide methods for verifying application-specific
properties like redundancy, consistency and usability of rules.
The work presented in [16] is not tailored to a specific rule
language and requires a specific model checking tool, while
the verification methods proposed in our work are based
on a DSL for IE, and allow for defining and implementing
verification algorithms directly using efficient techniques such
as SMT solvers and theorem provers that enable the verifi-
cation of application-specific properties. With respect to our
approach, in [14] properties such as correctness and usability
are not considered for verification. Redundant rules are not
directly detected by Heptagon/BZR [15]. Duplicated rules
are compiled and executed at run-time and rule actions are
activated using the or operator. Instead, our approach enables
end-users to identify redundant rules and decide how to
modify the program; therefore it allows a deeper analysis and
understanding in the design phase, giving to the programmer
a greater control on the system he or she intends to develop.



Furthermore, they do not provide an implementation of their
approach or experimental evaluation.

VIII. CONCLUSIONS

This paper proposes methods and a tool for modelling and
verifying properties of rule-based systems in IE. In particular,
the basis for this approach is a domain-specific language
(IRON) that can be employed both by developers and by end-
users to program and configure an ECA rule-based system
for IE. The expressivity of IRON enables the application of
high performance methods for verifying certain requirements
that are specific for ECA-rule based systems for IE. We
have implemented these methods in the tool vIRONy, which
we have released as open source, and we have validate our
approach and our tool against four cases studies from the
literature.
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